Jungjae Woo, Jeongmin Seo, Hyewon Cho, Soeun Park, Changsoo Han, Hyejeong Kim
{"title":"<i>Luffa cylindrica</i>-inspired powerless micropump: long-term, high-flow operation and energy-generation application.","authors":"Jungjae Woo, Jeongmin Seo, Hyewon Cho, Soeun Park, Changsoo Han, Hyejeong Kim","doi":"10.1039/d5lc00068h","DOIUrl":null,"url":null,"abstract":"<p><p>Powerless micropumps are in increasing demand for applications requiring portability, simplicity, and long-term operation. However, several existing passive pumps have limitations such as sustained high flow rates and extended operational periods. Inspired by the unique structural characteristics of <i>Luffa cylindrica</i>, this study aims to develop a biomimetic micropump capable of long-term and high-flow operation. By examining the water transport mechanisms in a hierarchical porous structure, we designed and fabricated micropumps that replicate these mechanisms. A key aspect of this design is the integration of flow resistors, which enables precise control over the absorption rates and extend the pumping duration. The cone-shaped agarose aerogel (AAG) micropump operates for over 930 min with an average flow rate of 5.6 μl min<sup>-1</sup>, demonstrating significant longevity. The agarose superabsorbent polymer aerogel (ASAG) micropump, while having a shorter operational duration of approximately 620 min, exhibited a significantly higher average pumping rate of 13.2 μl min<sup>-1</sup>. This study highlights the potential of bio-inspired designs for advancing efficient and powerless pumping systems. The proposed micropump shows promise for applications in microfluidic devices and reverse electrodialysis systems, where continuous and sustainable fluid transport is essential.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5lc00068h","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Powerless micropumps are in increasing demand for applications requiring portability, simplicity, and long-term operation. However, several existing passive pumps have limitations such as sustained high flow rates and extended operational periods. Inspired by the unique structural characteristics of Luffa cylindrica, this study aims to develop a biomimetic micropump capable of long-term and high-flow operation. By examining the water transport mechanisms in a hierarchical porous structure, we designed and fabricated micropumps that replicate these mechanisms. A key aspect of this design is the integration of flow resistors, which enables precise control over the absorption rates and extend the pumping duration. The cone-shaped agarose aerogel (AAG) micropump operates for over 930 min with an average flow rate of 5.6 μl min-1, demonstrating significant longevity. The agarose superabsorbent polymer aerogel (ASAG) micropump, while having a shorter operational duration of approximately 620 min, exhibited a significantly higher average pumping rate of 13.2 μl min-1. This study highlights the potential of bio-inspired designs for advancing efficient and powerless pumping systems. The proposed micropump shows promise for applications in microfluidic devices and reverse electrodialysis systems, where continuous and sustainable fluid transport is essential.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.