Raphaël Bouchard, Charles Babin, Eric Normandeau, Amanda Xuereb, Félix Boulanger, Angela Coxon, Sanford Diamond, Robert Fireman, John Lameboy, Natasha Louttit, George Natawapineskum, Derek Okimaw, Dante Torio, Stephanie Varty, Jean-Sébastien Moore, Dylan Fraser, Louis Bernatchez
{"title":"Shared Dispersal Patterns but Contrasting Levels of Gene Flow in Two Anadromous Salmonids Along a Broad Subarctic Coastal Gradient.","authors":"Raphaël Bouchard, Charles Babin, Eric Normandeau, Amanda Xuereb, Félix Boulanger, Angela Coxon, Sanford Diamond, Robert Fireman, John Lameboy, Natasha Louttit, George Natawapineskum, Derek Okimaw, Dante Torio, Stephanie Varty, Jean-Sébastien Moore, Dylan Fraser, Louis Bernatchez","doi":"10.1111/mec.17739","DOIUrl":null,"url":null,"abstract":"<p><p>Dispersal is a highly variable trait influenced by life history and ecological factors, affecting gene flow when dispersers successfully reproduce. Anadromous salmonids, with their diverse migratory strategies and ecological traits, serve as an ideal model for studying dispersal evolution, showcasing significant inter- and intraspecific variation. Although environmental factors like temperature likely influence dispersal propensity, their effects remain poorly documented. This study compares dispersal patterns and population structure in lake whitefish (Coregonus clupeaformis) and brook charr (Salvelinus fontinalis) along the subarctic coastline of James Bay, covering four degrees of latitude. These species differ in life history and population size, representing contrasting ends of a continuum influencing dispersal and gene flow. We hypothesised that lake whitefish, with shorter freshwater residency and potentially reduced olfactory imprinting, would disperse more frequently than brook charr. Using low-coverage whole-genome sequencing, we found that lake whitefish exhibited broader-scale population structure and greater long-distance dispersal capacity than brook charr. Surprisingly, both species showed similar dispersal rates and population differentiation levels. However, lake whitefish had effective population sizes approximately 10 times larger than brook charr, indicating that while their dispersal is common, it results in lower effective gene flow. Moreover, dispersal rates in both species were lower in the northern study area, likely due to colder temperatures, delayed ice break and shorter growing seasons. These findings yield insights into how life history and environmental variation shape dispersal evolution in migratory species.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17739"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17739","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dispersal is a highly variable trait influenced by life history and ecological factors, affecting gene flow when dispersers successfully reproduce. Anadromous salmonids, with their diverse migratory strategies and ecological traits, serve as an ideal model for studying dispersal evolution, showcasing significant inter- and intraspecific variation. Although environmental factors like temperature likely influence dispersal propensity, their effects remain poorly documented. This study compares dispersal patterns and population structure in lake whitefish (Coregonus clupeaformis) and brook charr (Salvelinus fontinalis) along the subarctic coastline of James Bay, covering four degrees of latitude. These species differ in life history and population size, representing contrasting ends of a continuum influencing dispersal and gene flow. We hypothesised that lake whitefish, with shorter freshwater residency and potentially reduced olfactory imprinting, would disperse more frequently than brook charr. Using low-coverage whole-genome sequencing, we found that lake whitefish exhibited broader-scale population structure and greater long-distance dispersal capacity than brook charr. Surprisingly, both species showed similar dispersal rates and population differentiation levels. However, lake whitefish had effective population sizes approximately 10 times larger than brook charr, indicating that while their dispersal is common, it results in lower effective gene flow. Moreover, dispersal rates in both species were lower in the northern study area, likely due to colder temperatures, delayed ice break and shorter growing seasons. These findings yield insights into how life history and environmental variation shape dispersal evolution in migratory species.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms