Insights into the genomic divergence of maize heterotic groups in China.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Integrative Plant Biology Pub Date : 2025-03-20 DOI:10.1111/jipb.13884
Yingjie Xue, Yikun Zhao, Yunlong Zhang, Rui Wang, Xiaohui Li, Zhihao Liu, Weiwei Wang, Shaoxi Zhu, Yaming Fan, Liwen Xu, Wei Zhao, Jiuran Zhao, Fengge Wang
{"title":"Insights into the genomic divergence of maize heterotic groups in China.","authors":"Yingjie Xue, Yikun Zhao, Yunlong Zhang, Rui Wang, Xiaohui Li, Zhihao Liu, Weiwei Wang, Shaoxi Zhu, Yaming Fan, Liwen Xu, Wei Zhao, Jiuran Zhao, Fengge Wang","doi":"10.1111/jipb.13884","DOIUrl":null,"url":null,"abstract":"<p><p>Diverse heterotic groups have been developed in China over several decades, but their genomic divergences have not been systematically studied after improvement. In this study, we performed Maize6H-60K array of 5,822 maize accessions and whole-genome re-sequencing of 150 inbred lines collected in China. Using multiple population structure analysis methods, we established a genetic boundary used to categorize heterotic groups and germplasm resources. We identified three chloroplast-cytoplasmic types that evolved during adaptation to diverse climatic environments in maize through phylogenetic and haplotype analyses. Comparative analyses revealed obvious genetic differences between heterotic groups and germplasm resources at both the chloroplast and nuclear genome levels, especially in the unique heterotic groups HG1 and HG2, which exhibited distinct regionality and genetic uniqueness. The divergent differentiation of heterotic groups from germplasm resources was driven by differential selection in specific genomic regions. Genome-wide selective sweep analysis identified core selected regions and candidate selected genes associated with traits between heterotic groups, highlighting that stress response- and plant defense-related genes were selected for environmental adaptation across a broad latitudinal range in China. Meanwhile, a genome-wide association study analysis provided evidence that core selected genes served as an important candidate gene pool with a potential role in genetic improvement. Gene exchanges among heterotic groups, which avoided the predominant heterotic patterns as much as possible, occurred to achieve population improvement during modern maize breeding. This study provides insights into the population differentiation and genetic characteristics of heterotic groups, which will facilitate the utilization of germplasm resources, the creation of novel maize germplasm, and the optimization of heterotic patterns during future maize breeding in China.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13884","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diverse heterotic groups have been developed in China over several decades, but their genomic divergences have not been systematically studied after improvement. In this study, we performed Maize6H-60K array of 5,822 maize accessions and whole-genome re-sequencing of 150 inbred lines collected in China. Using multiple population structure analysis methods, we established a genetic boundary used to categorize heterotic groups and germplasm resources. We identified three chloroplast-cytoplasmic types that evolved during adaptation to diverse climatic environments in maize through phylogenetic and haplotype analyses. Comparative analyses revealed obvious genetic differences between heterotic groups and germplasm resources at both the chloroplast and nuclear genome levels, especially in the unique heterotic groups HG1 and HG2, which exhibited distinct regionality and genetic uniqueness. The divergent differentiation of heterotic groups from germplasm resources was driven by differential selection in specific genomic regions. Genome-wide selective sweep analysis identified core selected regions and candidate selected genes associated with traits between heterotic groups, highlighting that stress response- and plant defense-related genes were selected for environmental adaptation across a broad latitudinal range in China. Meanwhile, a genome-wide association study analysis provided evidence that core selected genes served as an important candidate gene pool with a potential role in genetic improvement. Gene exchanges among heterotic groups, which avoided the predominant heterotic patterns as much as possible, occurred to achieve population improvement during modern maize breeding. This study provides insights into the population differentiation and genetic characteristics of heterotic groups, which will facilitate the utilization of germplasm resources, the creation of novel maize germplasm, and the optimization of heterotic patterns during future maize breeding in China.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
期刊最新文献
Insights into the genomic divergence of maize heterotic groups in China. DSD1/ZmICEb regulates stomatal development and drought tolerance in maize. Essential roles of nodule cysteine-rich peptides in maintaining the viability of terminally differentiated bacteroids in legume-rhizobia symbiosis. The LUX-SWI3C module regulates photoperiod sensitivity in Arabidopsis thaliana. Molecular breeding of tomato: Advances and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1