Light-Induced Welding of Electrospun Poly(ε-caprolactone) Nanofibers in a Nonwoven Mat by Leveraging the Photothermal Effect of Gold Nanocages

IF 4.3 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2025-03-19 DOI:10.1002/marc.202401144
Haoxuan Li, Yidan Chen, Tong Wu, Wenxia Wang, Haoyan Cheng, Jiajia Xue, Younan Xia
{"title":"Light-Induced Welding of Electrospun Poly(ε-caprolactone) Nanofibers in a Nonwoven Mat by Leveraging the Photothermal Effect of Gold Nanocages","authors":"Haoxuan Li,&nbsp;Yidan Chen,&nbsp;Tong Wu,&nbsp;Wenxia Wang,&nbsp;Haoyan Cheng,&nbsp;Jiajia Xue,&nbsp;Younan Xia","doi":"10.1002/marc.202401144","DOIUrl":null,"url":null,"abstract":"<p>Nonwoven mats of electrospun nanofibers are widely used in an array of applications, including those related to filtration, textiles, and tissue engineering. The performance of the mats is often plagued by their relatively weak mechanical strength due to the lack of bonding at the junction points between fibers. To address this issue, here a controllable technique is demonstrated for welding a nonwoven mat of poly(<i>ε</i>-caprolactone) fibers into an interconnected network by leveraging the photothermal effect of Au nanocages under the irradiation of a near-infrared laser. Upon irradiation for 2 s only, the poly(<i>ε</i>-caprolactone) fibers in a nonwoven mat are permanently welded at the junction points. When the irradiation time is increased to 5 s, the fibers fused together transforming the porous and opaque mat into a transparent solid film. In addition to strengthening nonwoven mats of electrospun nanofibers, this technique may open the door to new applications such as masking, patterning, and printing.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":"46 13","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/marc.202401144","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/marc.202401144","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Nonwoven mats of electrospun nanofibers are widely used in an array of applications, including those related to filtration, textiles, and tissue engineering. The performance of the mats is often plagued by their relatively weak mechanical strength due to the lack of bonding at the junction points between fibers. To address this issue, here a controllable technique is demonstrated for welding a nonwoven mat of poly(ε-caprolactone) fibers into an interconnected network by leveraging the photothermal effect of Au nanocages under the irradiation of a near-infrared laser. Upon irradiation for 2 s only, the poly(ε-caprolactone) fibers in a nonwoven mat are permanently welded at the junction points. When the irradiation time is increased to 5 s, the fibers fused together transforming the porous and opaque mat into a transparent solid film. In addition to strengthening nonwoven mats of electrospun nanofibers, this technique may open the door to new applications such as masking, patterning, and printing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用金纳米笼的光热效应,电纺聚(ε-己内酯)纳米纤维在无纺布垫上的光致焊接。
电纺纳米纤维非织造垫广泛应用于过滤、纺织和组织工程等领域。由于纤维之间的连接点缺乏粘合,因此其相对较弱的机械强度经常困扰着垫子的性能。为了解决这一问题,本文展示了一种可控的技术,利用金纳米笼在近红外激光照射下的光热效应,将聚(ε-己内酯)纤维非织造垫焊接成一个相互连接的网络。辐照2 s后,聚(ε-己内酯)纤维在无纺布毡的连接点处永久焊接。当辐照时间增加到5 s时,纤维融合在一起,使多孔不透明的垫子变成透明的固体薄膜。除了加强电纺纳米纤维的非织造垫外,这项技术还可能为掩蔽、图案和印刷等新应用打开大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Conductive and Self-Adhesive Polyelectrolyte Hydrogel Sensor for Flexible Wearable Devices and Reusable Physiological Electrode. Preparation of Platelet Membrane-Coated Gelatin Nanoparticle Toward Alternative to Platelet Preparation. Self Dilution of Model Polystyrene Pom-Poms and Combs by Unentangled Side Arms. Dependence of Ferroelectric Response of P(VDF-TrFE) Films on Preparation Process and Post-Stretching. One-Step Polymerized Stable Open-Shell Poly(3,4-dioxythiophene) Radicals for High Photothermal Conversion and Electron Conductivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1