Light-Induced Welding of Electrospun Poly(ε-caprolactone) Nanofibers in a Nonwoven Mat by Leveraging the Photothermal Effect of Gold Nanocages.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2025-03-19 DOI:10.1002/marc.202401144
Haoxuan Li, Yidan Chen, Tong Wu, Wenxia Wang, Haoyan Cheng, Jiajia Xue, Younan Xia
{"title":"Light-Induced Welding of Electrospun Poly(ε-caprolactone) Nanofibers in a Nonwoven Mat by Leveraging the Photothermal Effect of Gold Nanocages.","authors":"Haoxuan Li, Yidan Chen, Tong Wu, Wenxia Wang, Haoyan Cheng, Jiajia Xue, Younan Xia","doi":"10.1002/marc.202401144","DOIUrl":null,"url":null,"abstract":"<p><p>Nonwoven mats of electrospun nanofibers are widely used in an array of applications, including those related to filtration, textiles, and tissue engineering. The performance of the mats is often plagued by their relatively weak mechanical strength due to the lack of bonding at the junction points between fibers. To address this issue, here a controllable technique is demonstrated for welding a nonwoven mat of poly(ε-caprolactone) fibers into an interconnected network by leveraging the photothermal effect of Au nanocages under the irradiation of a near-infrared laser. Upon irradiation for 2 s only, the poly(ε-caprolactone) fibers in a nonwoven mat are permanently welded at the junction points. When the irradiation time is increased to 5 s, the fibers fused together transforming the porous and opaque mat into a transparent solid film. In addition to strengthening nonwoven mats of electrospun nanofibers, this technique may open the door to new applications such as masking, patterning, and printing.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401144"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401144","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Nonwoven mats of electrospun nanofibers are widely used in an array of applications, including those related to filtration, textiles, and tissue engineering. The performance of the mats is often plagued by their relatively weak mechanical strength due to the lack of bonding at the junction points between fibers. To address this issue, here a controllable technique is demonstrated for welding a nonwoven mat of poly(ε-caprolactone) fibers into an interconnected network by leveraging the photothermal effect of Au nanocages under the irradiation of a near-infrared laser. Upon irradiation for 2 s only, the poly(ε-caprolactone) fibers in a nonwoven mat are permanently welded at the junction points. When the irradiation time is increased to 5 s, the fibers fused together transforming the porous and opaque mat into a transparent solid film. In addition to strengthening nonwoven mats of electrospun nanofibers, this technique may open the door to new applications such as masking, patterning, and printing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Multicolor Mechanochromic Polymer Blends That Can Distinguish between Tensile-Stress States. Thermal Conductivity in Side-Chain Liquid-Crystal Epoxy Polymers: Influence of Mesogen Structure. Designed, Programmable Protein Cages Utilizing Diverse Metal Coordination Geometries Show Reversible, pH-Dependent Assembly. Antimicrobial Silicon Rubber Crosslinked with Bornyl-Siloxane. Direct Click Bonding of Dissimilar Solid Materials Based on the Catalyst-Free Huisgen 1,3-Dipolar Cycloaddition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1