Bis-Naphthylacrylonitrile-Based Supramolecular Artificial Light-Harvesting System for White Light Emission.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2025-04-01 Epub Date: 2025-01-07 DOI:10.1002/marc.202400929
Menghang Li, Ruixin Wang, Yang Xia, Yuan Fu, Lujie Wu, Guangping Sun, Jinli Zhu, Yanfeng Tang, Yong Yao
{"title":"Bis-Naphthylacrylonitrile-Based Supramolecular Artificial Light-Harvesting System for White Light Emission.","authors":"Menghang Li, Ruixin Wang, Yang Xia, Yuan Fu, Lujie Wu, Guangping Sun, Jinli Zhu, Yanfeng Tang, Yong Yao","doi":"10.1002/marc.202400929","DOIUrl":null,"url":null,"abstract":"<p><p>A novel aggregation-induced emission (AIE)-based artificial light-harvesting system (LHS) is successfully assembled via the host-guest interaction of bis-naphthylacrylonitrile derivative (BND), water-soluble pillar[5]arene (WP5), and sulforhodamine 101 (SR101). After host-guest assembly, the formed WP5⊃BND complexes spontaneously self-aggregated into WP5⊃BND nanoparticles (donors) and SR101 (acceptors) is introduced into WP5⊃BND to fabricate WP5⊃BND-SR101 LHS. Through the investigation of energy transfer between donors and acceptors, the artificial light-harvesting processes are certified in WP5⊃BND-SR101 LHS and the absolute fluorescence quantum yields (Φ<sub>f(abs)</sub>) are significantly improved from 8.9% (for WP5⊃BND) to 31.1% (for WP5⊃BND-SR101), exhibiting the excellent light-harvesting capabilities. Notably, by tuning the donor/acceptor (D:A) molar ratio to 250:1, a conspicuous white light emission (CIE coordinate is (0.32, 0.32)) is realized and the fluorescence quantum yield of white light emission (Φ<sub>f(abs)</sub> <sub>WP5</sub> <sub>⊃</sub> <sub>BND-SR101-White</sub>) is 29.2%. Moreover, the antenna effect of white fluorescence emission (AE<sub>WP5</sub> <sub>⊃</sub> <sub>BND-SR101-White</sub>) can reach 36.2, which is higher than that of recent artificial LHSs in water environments, suggesting vast potential applications in aqueous LHSs.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":"46 6","pages":"e2400929"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400929","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A novel aggregation-induced emission (AIE)-based artificial light-harvesting system (LHS) is successfully assembled via the host-guest interaction of bis-naphthylacrylonitrile derivative (BND), water-soluble pillar[5]arene (WP5), and sulforhodamine 101 (SR101). After host-guest assembly, the formed WP5⊃BND complexes spontaneously self-aggregated into WP5⊃BND nanoparticles (donors) and SR101 (acceptors) is introduced into WP5⊃BND to fabricate WP5⊃BND-SR101 LHS. Through the investigation of energy transfer between donors and acceptors, the artificial light-harvesting processes are certified in WP5⊃BND-SR101 LHS and the absolute fluorescence quantum yields (Φf(abs)) are significantly improved from 8.9% (for WP5⊃BND) to 31.1% (for WP5⊃BND-SR101), exhibiting the excellent light-harvesting capabilities. Notably, by tuning the donor/acceptor (D:A) molar ratio to 250:1, a conspicuous white light emission (CIE coordinate is (0.32, 0.32)) is realized and the fluorescence quantum yield of white light emission (Φf(abs) WP5 BND-SR101-White) is 29.2%. Moreover, the antenna effect of white fluorescence emission (AEWP5 BND-SR101-White) can reach 36.2, which is higher than that of recent artificial LHSs in water environments, suggesting vast potential applications in aqueous LHSs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Multicolor Mechanochromic Polymer Blends That Can Distinguish between Tensile-Stress States. Thermal Conductivity in Side-Chain Liquid-Crystal Epoxy Polymers: Influence of Mesogen Structure. Designed, Programmable Protein Cages Utilizing Diverse Metal Coordination Geometries Show Reversible, pH-Dependent Assembly. Antimicrobial Silicon Rubber Crosslinked with Bornyl-Siloxane. Direct Click Bonding of Dissimilar Solid Materials Based on the Catalyst-Free Huisgen 1,3-Dipolar Cycloaddition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1