Artificial Intelligence to Improve Blood Pressure Control: A State-of-the-Art Review.

IF 3.1 3区 医学 Q2 PERIPHERAL VASCULAR DISEASE American Journal of Hypertension Pub Date : 2025-07-15 DOI:10.1093/ajh/hpaf035
Amogh Karnik, Eugene Yang
{"title":"Artificial Intelligence to Improve Blood Pressure Control: A State-of-the-Art Review.","authors":"Amogh Karnik, Eugene Yang","doi":"10.1093/ajh/hpaf035","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertension remains a major global health challenge, contributing to significant morbidity and mortality. Advances in artificial intelligence (AI) and machine learning (ML) are transforming hypertension care by enhancing blood pressure (BP) measurement, risk assessment, and personalized treatment. AI-powered technologies have the potential to enable accurate non-invasive BP monitoring and facilitate tailored lifestyle modifications, enhancing adherence and outcomes. ML models can also predict hypertension risk based on demographic, lifestyle, and clinical data, enabling earlier intervention and prevention strategies. However, challenges such as the lack of standardized validation protocols and potential biases in AI systems may widen health disparities. Future research must prioritize rigorous validation across diverse populations and ensure algorithm transparency. By leveraging AI responsibly, we can revolutionize hypertension management, enhance health equity, and improve cardiovascular outcomes.</p>","PeriodicalId":7578,"journal":{"name":"American Journal of Hypertension","volume":" ","pages":"519-526"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Hypertension","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ajh/hpaf035","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

Abstract

Hypertension remains a major global health challenge, contributing to significant morbidity and mortality. Advances in artificial intelligence (AI) and machine learning (ML) are transforming hypertension care by enhancing blood pressure (BP) measurement, risk assessment, and personalized treatment. AI-powered technologies have the potential to enable accurate non-invasive BP monitoring and facilitate tailored lifestyle modifications, enhancing adherence and outcomes. ML models can also predict hypertension risk based on demographic, lifestyle, and clinical data, enabling earlier intervention and prevention strategies. However, challenges such as the lack of standardized validation protocols and potential biases in AI systems may widen health disparities. Future research must prioritize rigorous validation across diverse populations and ensure algorithm transparency. By leveraging AI responsibly, we can revolutionize hypertension management, enhance health equity, and improve cardiovascular outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能改善血压控制:最新进展综述。
高血压仍然是一项重大的全球健康挑战,导致大量发病率和死亡率。人工智能(AI)和机器学习(ML)的进步正在通过增强血压(BP)测量、风险评估和个性化治疗来改变高血压治疗。人工智能技术有可能实现准确的无创血压监测,促进量身定制的生活方式改变,提高依从性和疗效。ML模型还可以根据人口统计、生活方式和临床数据预测高血压风险,从而实现早期干预和预防策略。然而,缺乏标准化的验证协议和人工智能系统中潜在的偏见等挑战可能会扩大健康差距。未来的研究必须优先考虑在不同人群中进行严格的验证,并确保算法的透明度。通过负责任地利用人工智能,我们可以彻底改变高血压管理,增强健康公平,改善心血管疾病结局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Journal of Hypertension
American Journal of Hypertension 医学-外周血管病
CiteScore
6.90
自引率
6.20%
发文量
144
审稿时长
3-8 weeks
期刊介绍: The American Journal of Hypertension is a monthly, peer-reviewed journal that provides a forum for scientific inquiry of the highest standards in the field of hypertension and related cardiovascular disease. The journal publishes high-quality original research and review articles on basic sciences, molecular biology, clinical and experimental hypertension, cardiology, epidemiology, pediatric hypertension, endocrinology, neurophysiology, and nephrology.
期刊最新文献
Reducing Clinical Inertia in Hypertension Through Primary Care Practitioner-Led Remote Patient Monitoring. Trends in Initial Combination Antihypertensive Therapy in a US Health System. Restless Legs, Relentless Pressure: The Non-Dipping Pattern in Restless Legs Syndrome Beyond Shared Comorbidities. Association of Non-Insulin-Based Markers of Insulin Resistance with Hypertension in Type 2 Diabetes: An Age- and Gender-Matched Cross-Sectional Study. Hypertension Medication Changes in Patients Prescribed Remote Monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1