Adaptive Raman spectral unmixing method based on Voigt peak compensation for quantitative analysis of cellular biochemical components.

IF 3.2 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Biomedical optics express Pub Date : 2025-02-28 eCollection Date: 2025-03-01 DOI:10.1364/BOE.553461
Xiang Chen, Ping Tang, Jianhui Wan, Weina Zhang, Liyun Zhong
{"title":"Adaptive Raman spectral unmixing method based on Voigt peak compensation for quantitative analysis of cellular biochemical components.","authors":"Xiang Chen, Ping Tang, Jianhui Wan, Weina Zhang, Liyun Zhong","doi":"10.1364/BOE.553461","DOIUrl":null,"url":null,"abstract":"<p><p>Raman spectroscopy, with its unique \"molecular fingerprint\" characteristics, is an essential tool for label-free, non-invasive biochemical analysis of cells. It provides precise information on cellular biochemical components, such as proteins, lipids, and nucleic acids by analyzing molecular vibrational modes. However, overlapping Raman spectral signals make spectral unmixing crucial for accurate quantification. Traditional unmixing methods face challenges: unsupervised algorithms yield poorly interpretable results, while supervised methods like BCA rely heavily on accurate reference spectra and are sensitive to environmental changes (e.g., pH, temperature, excitation wavelength), causing spectral distortion and reducing quantitative reliability. This study addresses these challenges by introducing a parameterized Voigt function into the linear spectral mixing model for element spectrum compensation, using iterative least-squares optimization for adaptive unmixing and quantitative analysis. Simulations show that the Voigt-compensated unmixing algorithm improves spectral fitting accuracy and robustness. Applied to Raman spectra from Hela cell apoptosis and iPSCs differentiation, the algorithm accurately tracks biochemical molecular changes, proving its applicability in cellular Raman spectral analysis and a precise, reliable, and versatile tool for quantitative biochemical analysis.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 3","pages":"1284-1298"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.553461","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Raman spectroscopy, with its unique "molecular fingerprint" characteristics, is an essential tool for label-free, non-invasive biochemical analysis of cells. It provides precise information on cellular biochemical components, such as proteins, lipids, and nucleic acids by analyzing molecular vibrational modes. However, overlapping Raman spectral signals make spectral unmixing crucial for accurate quantification. Traditional unmixing methods face challenges: unsupervised algorithms yield poorly interpretable results, while supervised methods like BCA rely heavily on accurate reference spectra and are sensitive to environmental changes (e.g., pH, temperature, excitation wavelength), causing spectral distortion and reducing quantitative reliability. This study addresses these challenges by introducing a parameterized Voigt function into the linear spectral mixing model for element spectrum compensation, using iterative least-squares optimization for adaptive unmixing and quantitative analysis. Simulations show that the Voigt-compensated unmixing algorithm improves spectral fitting accuracy and robustness. Applied to Raman spectra from Hela cell apoptosis and iPSCs differentiation, the algorithm accurately tracks biochemical molecular changes, proving its applicability in cellular Raman spectral analysis and a precise, reliable, and versatile tool for quantitative biochemical analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Voigt峰补偿的细胞生化成分定量分析自适应拉曼光谱解混方法。
拉曼光谱以其独特的“分子指纹”特征,是无标记、无创细胞生化分析的重要工具。它通过分析分子振动模式,提供细胞生化成分的精确信息,如蛋白质、脂质和核酸。然而,重叠的拉曼光谱信号使得光谱解混对于精确量化至关重要。传统的解混方法面临挑战:无监督算法产生的结果可解释性较差,而BCA等监督方法严重依赖准确的参考光谱,对环境变化(如pH、温度、激发波长)敏感,导致光谱失真,降低了定量可靠性。本研究通过在线性光谱混合模型中引入参数化Voigt函数进行元素光谱补偿,并使用迭代最小二乘优化进行自适应解混和定量分析,解决了这些挑战。仿真结果表明,voight补偿解混算法提高了谱拟合精度和鲁棒性。该算法应用于Hela细胞凋亡和iPSCs分化的拉曼光谱,准确地跟踪了生物化学分子的变化,证明了其在细胞拉曼光谱分析中的适用性,是一种精确、可靠、通用的定量生化分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
期刊最新文献
Erratum: Imaging otoconia by second harmonic generation microscopy: erratum. Automated animal gimbal steering for retinal imaging and stimulation. Imaging of Tissue and Cell Dynamics: introduction to the feature issue. qtOCT: quantitative transmission optical coherence tomography. Voltage imaging with periodic structured illumination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1