Regulation of pre-dawn arousal in Drosophila by a pair of trissinergic descending neurons of the visual and circadian networks.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Biology Pub Date : 2025-03-14 DOI:10.1016/j.cub.2025.02.056
Ruihan Jiang, Yue Tian, Xin Yuan, Fang Guo
{"title":"Regulation of pre-dawn arousal in Drosophila by a pair of trissinergic descending neurons of the visual and circadian networks.","authors":"Ruihan Jiang, Yue Tian, Xin Yuan, Fang Guo","doi":"10.1016/j.cub.2025.02.056","DOIUrl":null,"url":null,"abstract":"<p><p>Circadian neurons form a complex neural network that generates circadian oscillations. How the circadian neural network transmits circadian signals to other brain regions, thereby regulating the activity patterns in fruit flies, is not well known. Using the FlyWire database, we identified a cluster of descending neurons, DNp27, which is densely connected with key circadian neurons and the visual circuit, projecting extensively across the brain. DNp27 receives excitatory inputs from the circadian neurons DN3s at night and photo-inhibitory signals predominantly during the day, resulting in calcium oscillations that peak in the early morning and dip at dusk. Experimental manipulation of DNp27 revealed its role in activity regulation: artificial activation of DNp27 decreased flies' activity, while ablation or silencing led to an advance in the morning anticipatory peak. Similar alterations in the morning peak were observed following pan-neuronal knockdown of either Trissin or TrissinR, suggesting the involvement of this neuropeptide signaling pathway in DNp27 function. Moreover, neural circuitry and connectivity analyses indicate that DNp27 may regulate circadian neurons via extra-clock electrical oscillators (xCEOs). Lastly, we found that DNp27 modulates arousal thresholds by inhibiting light-responsive activity in the central brain, thereby promoting sleep stability, particularly in the pre-dawn period. Together, these findings suggest that DNp27 plays a crucial role in maintaining stable sleep patterns.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.02.056","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Circadian neurons form a complex neural network that generates circadian oscillations. How the circadian neural network transmits circadian signals to other brain regions, thereby regulating the activity patterns in fruit flies, is not well known. Using the FlyWire database, we identified a cluster of descending neurons, DNp27, which is densely connected with key circadian neurons and the visual circuit, projecting extensively across the brain. DNp27 receives excitatory inputs from the circadian neurons DN3s at night and photo-inhibitory signals predominantly during the day, resulting in calcium oscillations that peak in the early morning and dip at dusk. Experimental manipulation of DNp27 revealed its role in activity regulation: artificial activation of DNp27 decreased flies' activity, while ablation or silencing led to an advance in the morning anticipatory peak. Similar alterations in the morning peak were observed following pan-neuronal knockdown of either Trissin or TrissinR, suggesting the involvement of this neuropeptide signaling pathway in DNp27 function. Moreover, neural circuitry and connectivity analyses indicate that DNp27 may regulate circadian neurons via extra-clock electrical oscillators (xCEOs). Lastly, we found that DNp27 modulates arousal thresholds by inhibiting light-responsive activity in the central brain, thereby promoting sleep stability, particularly in the pre-dawn period. Together, these findings suggest that DNp27 plays a crucial role in maintaining stable sleep patterns.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
期刊最新文献
Regulation of pre-dawn arousal in Drosophila by a pair of trissinergic descending neurons of the visual and circadian networks. Nonlinear high-activity neuronal excitation enhances odor discrimination. Nuclear exclusion of condensin I in prophase coordinates mitotic chromosome reorganization to ensure complete sister chromatid resolution. Cadherin 4 assembles a family of color-preferring retinal circuits that respond to light offset. Diplonemid protists possess exotic endomembrane machinery, impacting models of membrane trafficking in modern and ancient eukaryotes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1