CGRP alleviates lipopolysaccharide-induced ARDS inflammation via the HIF-1α signalling pathway.

IF 6.7 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Clinical science Pub Date : 2025-03-20 DOI:10.1042/CS20243170
Ren Zi Zhang, Yuhua Zhong, Qiudie Liu, Mengqi Zhang, Daoxin Wang, Sheng Li, Di Qi
{"title":"CGRP alleviates lipopolysaccharide-induced ARDS inflammation via the HIF-1α signalling pathway.","authors":"Ren Zi Zhang, Yuhua Zhong, Qiudie Liu, Mengqi Zhang, Daoxin Wang, Sheng Li, Di Qi","doi":"10.1042/CS20243170","DOIUrl":null,"url":null,"abstract":"<p><p>Acute respiratory distress syndrome (ARDS) is an acute and severe disease with a high mortality rate. The outbreak of immune inflammation in the lung is an important pathogenic mechanism of ARDS. Notably, an imbalance in macrophage polarization is an important link in the occurrence and development of this inflammatory response. Recently, neuropeptides have been shown to regulate inflammation, but the role of neuropeptides in ARDS remains unclear. The aim of this study was to investigate the regulatory effect of calcitonin gene-related peptide (CGRP) on the inflammatory response in ARDS. We found that CGRP expression was increased in the serum of ARDS patients and in both in vitro and in vivo models of ARDS. CGRP can regulate the polarization of macrophages by targeting its receptor (receptor activity modifying protein 1 (RAMP1)), reduce the proportion of M1 macrophages, increase the proportion of M2 macrophages, and reduce pathological injury, inflammation, oxidative stress and apoptosis in lung tissue in LPS-induced ARDS both in vitro and in vivo. Additionally, we performed transcriptome sequencing and found that hypoxia-inducible factor-1α (HIF-1α) is involved in the above process and that CGRP can alleviate ARDS-related pathological damage, inflammation and oxidative stress by inhibiting the HIF-1α pathway to regulate macrophage polarization balance. These results indicate that CGRP has good potential for clinical translation in the treatment of pulmonary infection in ARDS. Furthermore, this study provides new ideas for the treatment of inflammatory bursts in ARDS.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20243170","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Acute respiratory distress syndrome (ARDS) is an acute and severe disease with a high mortality rate. The outbreak of immune inflammation in the lung is an important pathogenic mechanism of ARDS. Notably, an imbalance in macrophage polarization is an important link in the occurrence and development of this inflammatory response. Recently, neuropeptides have been shown to regulate inflammation, but the role of neuropeptides in ARDS remains unclear. The aim of this study was to investigate the regulatory effect of calcitonin gene-related peptide (CGRP) on the inflammatory response in ARDS. We found that CGRP expression was increased in the serum of ARDS patients and in both in vitro and in vivo models of ARDS. CGRP can regulate the polarization of macrophages by targeting its receptor (receptor activity modifying protein 1 (RAMP1)), reduce the proportion of M1 macrophages, increase the proportion of M2 macrophages, and reduce pathological injury, inflammation, oxidative stress and apoptosis in lung tissue in LPS-induced ARDS both in vitro and in vivo. Additionally, we performed transcriptome sequencing and found that hypoxia-inducible factor-1α (HIF-1α) is involved in the above process and that CGRP can alleviate ARDS-related pathological damage, inflammation and oxidative stress by inhibiting the HIF-1α pathway to regulate macrophage polarization balance. These results indicate that CGRP has good potential for clinical translation in the treatment of pulmonary infection in ARDS. Furthermore, this study provides new ideas for the treatment of inflammatory bursts in ARDS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical science
Clinical science 医学-医学:研究与实验
CiteScore
11.40
自引率
0.00%
发文量
189
审稿时长
4-8 weeks
期刊介绍: Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health. Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively: Cardiovascular system Cerebrovascular system Gastrointestinal tract and liver Genomic medicine Infection and immunity Inflammation Oncology Metabolism Endocrinology and nutrition Nephrology Circulation Respiratory system Vascular biology Molecular pathology.
期刊最新文献
CGRP alleviates lipopolysaccharide-induced ARDS inflammation via the HIF-1α signalling pathway. Osteoclast-derived exosomal miR-30a-3p promotes lead exposure-induced osteoporosis by triggering osteoblastic pyroptosis. Renal hypertrophy and hyperfiltration is enhanced in early acquired compared with a congenital solitary function kidney model in sheep. Identification of endoplasmic reticulum stress-associated lncRNAs influencing inflammation and VSMC function in abdominal aortic aneurysm. Trbp inhibits cardiac fibrosis through TGF-β pathway-mediated cross-talk between cardiomyocytes and fibroblasts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1