A Conserved Somatic Sex Determination Cascade Instructs Trait-Specific Sexual Dimorphism in Horned Dung Beetles.

IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Evolution & Development Pub Date : 2025-03-01 DOI:10.1111/ede.70004
London C Mitchell, Armin P Moczek, Erica M Nadolski
{"title":"A Conserved Somatic Sex Determination Cascade Instructs Trait-Specific Sexual Dimorphism in Horned Dung Beetles.","authors":"London C Mitchell, Armin P Moczek, Erica M Nadolski","doi":"10.1111/ede.70004","DOIUrl":null,"url":null,"abstract":"<p><p>Sex-specific trait expression represents a striking dimension of morphological variation within and across species. The mechanisms instructing sex-specific organ development have been well studied in a small number of insect model systems, suggesting striking conservation in some parts of the somatic sex determination pathway while hinting at possible evolutionary lability in others. However, further resolution of this phenomenon necessitates additional taxon sampling, particularly in groups in which sexual dimorphisms have undergone significant elaboration and diversification. Here, we functionally investigate the somatic sex determination pathway in the gazelle dung beetle Digitonthophagus gazella, an emerging model system in the study of the development and evolution of sexual dimorphisms. We find that RNA interference (RNAi) targeting transformer (tra) caused chromosomal females to develop morphological traits largely indistinguishable from those normally only observed in males, and that tra<sup>RNAi</sup> is sufficient to induce splicing of the normally male-specific isoform of doublesex in chromosomal females, while leaving males unaffected. Further, intersex<sup>RNAi</sup> was found to phenocopy previously described RNAi phenotypes of doublesex in female but not male beetles. These findings match predictions derived from models of the sex determination cascade as developed largely through studies in Drosophila melanogaster. In contrast, efforts to target transformer2 via RNAi resulted in high juvenile mortality but did not appear to affect doublesex splicing, whereas RNAi targeting Sex-lethal and two putative orthologs of hermaphrodite yielded no obvious phenotypic modifications in either males or females, raising the possibility that the function of a subset of sex determination genes may be derived in select Diptera and thus nonrepresentative of their roles in other holometabolous orders. Our results help illuminate how the differential evolutionary lability of the somatic sex determination pathway has contributed to the extraordinary morphological diversification of sex-specific trait expression found in nature.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"27 1","pages":"e70004"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution & Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ede.70004","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sex-specific trait expression represents a striking dimension of morphological variation within and across species. The mechanisms instructing sex-specific organ development have been well studied in a small number of insect model systems, suggesting striking conservation in some parts of the somatic sex determination pathway while hinting at possible evolutionary lability in others. However, further resolution of this phenomenon necessitates additional taxon sampling, particularly in groups in which sexual dimorphisms have undergone significant elaboration and diversification. Here, we functionally investigate the somatic sex determination pathway in the gazelle dung beetle Digitonthophagus gazella, an emerging model system in the study of the development and evolution of sexual dimorphisms. We find that RNA interference (RNAi) targeting transformer (tra) caused chromosomal females to develop morphological traits largely indistinguishable from those normally only observed in males, and that traRNAi is sufficient to induce splicing of the normally male-specific isoform of doublesex in chromosomal females, while leaving males unaffected. Further, intersexRNAi was found to phenocopy previously described RNAi phenotypes of doublesex in female but not male beetles. These findings match predictions derived from models of the sex determination cascade as developed largely through studies in Drosophila melanogaster. In contrast, efforts to target transformer2 via RNAi resulted in high juvenile mortality but did not appear to affect doublesex splicing, whereas RNAi targeting Sex-lethal and two putative orthologs of hermaphrodite yielded no obvious phenotypic modifications in either males or females, raising the possibility that the function of a subset of sex determination genes may be derived in select Diptera and thus nonrepresentative of their roles in other holometabolous orders. Our results help illuminate how the differential evolutionary lability of the somatic sex determination pathway has contributed to the extraordinary morphological diversification of sex-specific trait expression found in nature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolution & Development
Evolution & Development 生物-发育生物学
CiteScore
6.30
自引率
3.40%
发文量
26
审稿时长
>12 weeks
期刊介绍: Evolution & Development serves as a voice for the rapidly growing research community at the interface of evolutionary and developmental biology. The exciting re-integration of these two fields, after almost a century''s separation, holds much promise as the focus of a broader synthesis of biological thought. Evolution & Development publishes works that address the evolution/development interface from a diversity of angles. The journal welcomes papers from paleontologists, population biologists, developmental biologists, and molecular biologists, but also encourages submissions from professionals in other fields where relevant research is being carried out, from mathematics to the history and philosophy of science.
期刊最新文献
A Conserved Somatic Sex Determination Cascade Instructs Trait-Specific Sexual Dimorphism in Horned Dung Beetles. Genetic Mapping of Orofacial Traits Reveals a Single Genomic Region Associated With Differences in Multiple Parameters of Jaw Size Between Astyanax mexicanus Surface and Cavefish. Developmental Plasticity and the Evolutionary Rescue of a Colonizing Mite Exceptionally Preserved Setae: A Possible Morphological Synapomorphy of Cambrian Lophotrochozoans Complex and Dynamic Gene-by-Age and Gene-by-Environment Interactions Underlie Functional Morphological Variation in Adaptive Divergence in Arctic Charr (Salvelinus alpinus)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1