Integration of 3D-printed micromixers and spray drying for pulmonary delivery of antimicrobial microparticles

IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2025-03-17 DOI:10.1016/j.ijpharm.2025.125493
Brayan J. Anaya , Aytug Kara , Rafaela Raposo , Diego F. Tirado , Aikaterini Lalatsa , Elena González-Burgos , Dolores R. Serrano
{"title":"Integration of 3D-printed micromixers and spray drying for pulmonary delivery of antimicrobial microparticles","authors":"Brayan J. Anaya ,&nbsp;Aytug Kara ,&nbsp;Rafaela Raposo ,&nbsp;Diego F. Tirado ,&nbsp;Aikaterini Lalatsa ,&nbsp;Elena González-Burgos ,&nbsp;Dolores R. Serrano","doi":"10.1016/j.ijpharm.2025.125493","DOIUrl":null,"url":null,"abstract":"<div><div>Pulmonary drug delivery is crucial for treating respiratory diseases, requiring precise particle engineering for optimal therapeutic efficacy. This study demonstrates a novel integration of 3D-printed microfluidic micromixers with spray drying technology to produce inhalable azithromycin (AZM) microparticles targeting lung delivery. The formulation demonstrated effective deep lung deposition at both 30 L/min and 60 L/min flow rates. At 30 L/min, AZM-loaded microparticles achieved enhanced performance with 1.2-fold higher Fine Particle Fraction (FPF) &lt; 5 µm and 1.4-fold higher FPF &lt; 3 µm compared to 60 L/min. Microparticles (25 mg) can deliver an efficacious dose of AZM to the lung, exceeding the reported epidemiological cut-off for <em>Haemophilus influenzae</em> (4 mg/L) by approximately five-fold while maintaining high human bronchial epithelial cell viability (&gt; 94 %). The antibacterial efficacy against <em>H. influenzae</em> was confirmed, demonstrating the therapeutic potential against lung pathogens. The successful deep lung deposition at both air flow rates reflects the robustness of the formulation design, making it suitable for diverse patient populations with varying inspiratory capabilities, including children and elderly patients.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"674 ","pages":"Article 125493"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325003291","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Pulmonary drug delivery is crucial for treating respiratory diseases, requiring precise particle engineering for optimal therapeutic efficacy. This study demonstrates a novel integration of 3D-printed microfluidic micromixers with spray drying technology to produce inhalable azithromycin (AZM) microparticles targeting lung delivery. The formulation demonstrated effective deep lung deposition at both 30 L/min and 60 L/min flow rates. At 30 L/min, AZM-loaded microparticles achieved enhanced performance with 1.2-fold higher Fine Particle Fraction (FPF) < 5 µm and 1.4-fold higher FPF < 3 µm compared to 60 L/min. Microparticles (25 mg) can deliver an efficacious dose of AZM to the lung, exceeding the reported epidemiological cut-off for Haemophilus influenzae (4 mg/L) by approximately five-fold while maintaining high human bronchial epithelial cell viability (> 94 %). The antibacterial efficacy against H. influenzae was confirmed, demonstrating the therapeutic potential against lung pathogens. The successful deep lung deposition at both air flow rates reflects the robustness of the formulation design, making it suitable for diverse patient populations with varying inspiratory capabilities, including children and elderly patients.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合3d打印微混合器和喷雾干燥的肺输送抗菌微粒。
肺给药是治疗呼吸系统疾病的关键,需要精确的颗粒工程来达到最佳的治疗效果。本研究展示了3d打印微流控微混合器与喷雾干燥技术的新型集成,以生产可吸入的靶向肺输送的阿奇霉素(AZM)微粒。该配方在30 L/min和60 L/min流速下均显示有效的深肺沉积。在30 L/min时,负载azm的微颗粒的性能提高了1.2倍,细颗粒分数(FPF) 94 %。对流感嗜血杆菌的抗菌效果得到证实,显示了对肺部病原体的治疗潜力。在两种空气流速下成功的深肺沉积反映了配方设计的稳健性,使其适合具有不同吸气能力的不同患者群体,包括儿童和老年患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Mucoadhesion-controlled deposition and impaction dynamics of inhaled drugs in artificial mucus-coated airways: a coupled experimental-computational study. Process optimization in pharmaceutical hot-melt extrusion: real-time volatile detection via SIFT-MS combined with multivariate analysis. Corrigendum to "Enhanced gene delivery efficiency of cationic liposomes coated with PEGylated hyaluronic acid for anti P-glycoprotein siRNA: A potential candidate for overcoming multi-drug resistance". [Int. J. of Pharm. 477 (2014) 590-600]. Hydrophobic ion pairing for sustained local delivery of vancomycin from biodegradable nanospheres. Lyophilized formulation development and characterization of stable glatiramer acetate/oligonucleotide polyplexes at clinically therapeutic strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1