Exploring the in vitro anti-diabetic potential and in silico studies of 2, 3 and 2, 6-dichloroIndolinone.

IF 2 Q3 PHARMACOLOGY & PHARMACY Drug Target Insights Pub Date : 2025-03-10 eCollection Date: 2025-01-01 DOI:10.33393/dti.2025.3271
Abdur Rauf, Waqas Alam, Momin Khan, Hany W Darwish, Maria Daglia, Ahmed A Elhenawy, Haroon Khan
{"title":"Exploring the in vitro anti-diabetic potential and in silico studies of 2, 3 and 2, 6-dichloroIndolinone.","authors":"Abdur Rauf, Waqas Alam, Momin Khan, Hany W Darwish, Maria Daglia, Ahmed A Elhenawy, Haroon Khan","doi":"10.33393/dti.2025.3271","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Adequate hyperglycemic control is still a huge challenge with the clinically used therapeutics. New, more effective anti-diabetic agents are on the top list of drug discovery projects.</p><p><strong>Methods: </strong>This article deals with the in vitro anti-diabetic potential of 2, 3 dichloroIndolinone (C1) and 2, 6-dichloroIndolinone (C2) on α-glucosidase and α-amylase followed by in silico analysis.</p><p><strong>Results: </strong>Both compounds, C-1 and C-2, caused significant inhibition of α-glucosidase at various test concentrations with IC<sub>50</sub> of 35.266 μM and 38. 379 μM, respectively. Similarly, compounds C-1 and C-2 elicited significant anti-α-amylase action with IC<sub>50</sub> values of 42.449 μM and 46.708 μM, respectively. The molecular docking investigation regarding the α-glucosidase and α-amylase binding site was implemented to attain better comprehension with respect to the pattern in which binding mechanics occur between the C1 and C2 molecules and the active sites, which illustrated a higher binding efficacy in appraisal with reference inhibitor and acarbose. The interactions between the active compounds C1 and C2 with the active site residues were mainly polar bonds, hydrogen bonding, π-π, and π-H interactions, which contributed to a strong alignment with the enzyme backbone. Similarly, effective binding is frequently indicated by a strong and stable hydrogen-bonding pattern, which is suggested by the minimal fluctuation in MM-PBSA values.</p><p><strong>Conclusion: </strong>In short, this study will contribute to providing these compounds with an improved anti-diabetic profile and decreased toxicity.</p>","PeriodicalId":11326,"journal":{"name":"Drug Target Insights","volume":"19 ","pages":"11-17"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Target Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33393/dti.2025.3271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Adequate hyperglycemic control is still a huge challenge with the clinically used therapeutics. New, more effective anti-diabetic agents are on the top list of drug discovery projects.

Methods: This article deals with the in vitro anti-diabetic potential of 2, 3 dichloroIndolinone (C1) and 2, 6-dichloroIndolinone (C2) on α-glucosidase and α-amylase followed by in silico analysis.

Results: Both compounds, C-1 and C-2, caused significant inhibition of α-glucosidase at various test concentrations with IC50 of 35.266 μM and 38. 379 μM, respectively. Similarly, compounds C-1 and C-2 elicited significant anti-α-amylase action with IC50 values of 42.449 μM and 46.708 μM, respectively. The molecular docking investigation regarding the α-glucosidase and α-amylase binding site was implemented to attain better comprehension with respect to the pattern in which binding mechanics occur between the C1 and C2 molecules and the active sites, which illustrated a higher binding efficacy in appraisal with reference inhibitor and acarbose. The interactions between the active compounds C1 and C2 with the active site residues were mainly polar bonds, hydrogen bonding, π-π, and π-H interactions, which contributed to a strong alignment with the enzyme backbone. Similarly, effective binding is frequently indicated by a strong and stable hydrogen-bonding pattern, which is suggested by the minimal fluctuation in MM-PBSA values.

Conclusion: In short, this study will contribute to providing these compounds with an improved anti-diabetic profile and decreased toxicity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Target Insights
Drug Target Insights PHARMACOLOGY & PHARMACY-
CiteScore
2.70
自引率
0.00%
发文量
5
审稿时长
8 weeks
期刊最新文献
Exploring the in vitro anti-diabetic potential and in silico studies of 2, 3 and 2, 6-dichloroIndolinone. Characterization and enhanced antibiofilm activity of Annona muricata extract in combination with fluconazole against Candida albicans. Faricimab versus the standard of care for neovascular age-related macular degeneration in Italy: an indirect treatment comparison. Investigating the combinatory effect of Sclerocarya birrea with doxorubicin against selected colorectal cancer cell lines. Cytotoxic activity, selectivity, and clonogenicity of fruits and resins of Saudi medicinal plants against human liver adenocarcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1