Auranofin-loaded chitosan-lipid hybrid nanoparticle protects against the in-vitro/in-vivo model of Parkinson's disease via modulation of GSK-3β/ Nrf2/HO-1 signaling.
Divya Soni, Yogesh Garg, Shubham Upadhyay, Amit Bhatia, Bushra Basir, Sachin Kumar Singh, Kamal Dua, Puneet Kumar
{"title":"Auranofin-loaded chitosan-lipid hybrid nanoparticle protects against the in-vitro/in-vivo model of Parkinson's disease via modulation of GSK-3β/ Nrf2/HO-1 signaling.","authors":"Divya Soni, Yogesh Garg, Shubham Upadhyay, Amit Bhatia, Bushra Basir, Sachin Kumar Singh, Kamal Dua, Puneet Kumar","doi":"10.1016/j.ejphar.2025.177523","DOIUrl":null,"url":null,"abstract":"<p><p>Auranofin (AUF) is a gold-based compound that has demonstrated a wide range of biological effects, such as anti-inflammatory and antibacterial effects. However, the neuronal use of AUF is restricted due to its low bioavailability. Thus, to improve blood brain barrier (BBB) penetration and investigate its antiparkinsonian impact, the researchers developed AUF-loaded hybrid nanoparticles (AUFHNPs). This research delves into the neuroprotective potential of AUFHNPs against rotenone-induced Parkinson's disease (PD). The MTT assay, Acridine orange/Ethidium bromide (AO/EB) staining, RT-PCR, and western blot analysis were performed on SH-SY5Y lines. Also, AUFHNPs were prepared and characterized. For the in-vivo study, AUF, its NPs and rotenone were administered for 28 days, and behavioral parameters were performed on day 27 and 28. On the 29<sup>th</sup> day, animals were sacrificed, and brains were isolated for biochemical assessment, apoptotic and inflammatory markers evaluation, histopathology, and molecular examination. In-vitro results showed that AUF significantly restored cell viability and reduced apoptosis. Spherical-shaped NPs were observed under FE-SEM/TEM analysis. Administration of AUFHNPs in rats significantly restored motor activity and neuronal morphological changes by phosphorylating GSK-3β to increase the expression of Nrf2/HO-1. This study concludes that developing AUFHNPs increases AUF's bioavailability in the brain and exerts neuroprotection via modulating GSK-3β/ Nrf2/HO-1 pathways.</p>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":" ","pages":"177523"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejphar.2025.177523","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Auranofin (AUF) is a gold-based compound that has demonstrated a wide range of biological effects, such as anti-inflammatory and antibacterial effects. However, the neuronal use of AUF is restricted due to its low bioavailability. Thus, to improve blood brain barrier (BBB) penetration and investigate its antiparkinsonian impact, the researchers developed AUF-loaded hybrid nanoparticles (AUFHNPs). This research delves into the neuroprotective potential of AUFHNPs against rotenone-induced Parkinson's disease (PD). The MTT assay, Acridine orange/Ethidium bromide (AO/EB) staining, RT-PCR, and western blot analysis were performed on SH-SY5Y lines. Also, AUFHNPs were prepared and characterized. For the in-vivo study, AUF, its NPs and rotenone were administered for 28 days, and behavioral parameters were performed on day 27 and 28. On the 29th day, animals were sacrificed, and brains were isolated for biochemical assessment, apoptotic and inflammatory markers evaluation, histopathology, and molecular examination. In-vitro results showed that AUF significantly restored cell viability and reduced apoptosis. Spherical-shaped NPs were observed under FE-SEM/TEM analysis. Administration of AUFHNPs in rats significantly restored motor activity and neuronal morphological changes by phosphorylating GSK-3β to increase the expression of Nrf2/HO-1. This study concludes that developing AUFHNPs increases AUF's bioavailability in the brain and exerts neuroprotection via modulating GSK-3β/ Nrf2/HO-1 pathways.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.