Srxn1 Overexpression Protect Against Cardiac Remodelling by Inhibiting Oxidative Stress and Inflammation.

IF 5.3 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Journal of Cellular and Molecular Medicine Pub Date : 2025-03-01 DOI:10.1111/jcmm.70432
Huibo Wang, Ying Yang, Yong Ye, Xing Wei, Shen Chen, Bin Cheng, Yunbo Lv
{"title":"Srxn1 Overexpression Protect Against Cardiac Remodelling by Inhibiting Oxidative Stress and Inflammation.","authors":"Huibo Wang, Ying Yang, Yong Ye, Xing Wei, Shen Chen, Bin Cheng, Yunbo Lv","doi":"10.1111/jcmm.70432","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress and inflammation are common medical issues contributing to the onset and progression of heart failure (HF). Sulfiredoxin 1 (Srxn1) is a key regulatory factor in the antioxidant response. This study aimed to examine the effect of Srxn1 in HF. We utilised transcriptome sequencing to screen for differentially expressed genes in cardiac remodelling. We overexpressed Srxn1 in the hearts using an adeno-associated virus 9 (AAV9) system through tail vein injection. C57BL/6 mice were subjected to transverse aortic constriction (TAC) for 4 weeks. Echocardiography was used to evaluate cardiac function, and cardiac remodelling was estimated by histopathology and molecular techniques. In addition, H9C2 cells were stimulated by Ang II to establish an in vitro model of cardiomyocyte hypertrophy, and the effects of Srxn1 overexpression on the inflammatory pathways and oxidative stress in Ang II-stimulated H9C2 cells were examined. We found that Srxn1 is downregulated after cardiac remodelling by transcriptome sequencing. Our results revealed down-regulated levels of Srxn1 in murine hearts subjected to TAC treatment, and H9C2 challenged with Ang II. Moreover, compared with WT mice, AAV-9-Srxn1 mice exhibited dramatically ameliorated TAC-induced cardiac dysfunction, hypertrophy, fibrosis, oxidative stress, and inflammation. In terms of mechanism, both in vitro and in vivo experiments confirmed that the potential positive impacts may be linked to the inhibition of TLR4/NF-κB signalling. In summary, this study is the first to demonstrate the protective effects of Srxn1 against TAC-induced cardiac oxidative stress and inflammation, which are induced by the inhibited activation of the TLR4/NF-κB signalling pathway.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":"29 6","pages":"e70432"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jcmm.70432","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative stress and inflammation are common medical issues contributing to the onset and progression of heart failure (HF). Sulfiredoxin 1 (Srxn1) is a key regulatory factor in the antioxidant response. This study aimed to examine the effect of Srxn1 in HF. We utilised transcriptome sequencing to screen for differentially expressed genes in cardiac remodelling. We overexpressed Srxn1 in the hearts using an adeno-associated virus 9 (AAV9) system through tail vein injection. C57BL/6 mice were subjected to transverse aortic constriction (TAC) for 4 weeks. Echocardiography was used to evaluate cardiac function, and cardiac remodelling was estimated by histopathology and molecular techniques. In addition, H9C2 cells were stimulated by Ang II to establish an in vitro model of cardiomyocyte hypertrophy, and the effects of Srxn1 overexpression on the inflammatory pathways and oxidative stress in Ang II-stimulated H9C2 cells were examined. We found that Srxn1 is downregulated after cardiac remodelling by transcriptome sequencing. Our results revealed down-regulated levels of Srxn1 in murine hearts subjected to TAC treatment, and H9C2 challenged with Ang II. Moreover, compared with WT mice, AAV-9-Srxn1 mice exhibited dramatically ameliorated TAC-induced cardiac dysfunction, hypertrophy, fibrosis, oxidative stress, and inflammation. In terms of mechanism, both in vitro and in vivo experiments confirmed that the potential positive impacts may be linked to the inhibition of TLR4/NF-κB signalling. In summary, this study is the first to demonstrate the protective effects of Srxn1 against TAC-induced cardiac oxidative stress and inflammation, which are induced by the inhibited activation of the TLR4/NF-κB signalling pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
1.90%
发文量
496
审稿时长
28 weeks
期刊介绍: Bridging physiology and cellular medicine, and molecular biology and molecular therapeutics, Journal of Cellular and Molecular Medicine publishes basic research that furthers our understanding of the cellular and molecular mechanisms of disease and translational studies that convert this knowledge into therapeutic approaches.
期刊最新文献
Srxn1 Overexpression Protect Against Cardiac Remodelling by Inhibiting Oxidative Stress and Inflammation. Midnolin Correlates With Anti-Tumour Immunity and Promotes Liver Cancer Progression Through β-Catenin. Immunosuppressive SOX9-AS1 Resists Triple-Negative Breast Cancer Senescence Via Regulating Wnt Signalling Pathway. Nodularin-R Synergistically Enhances Abiraterone Against Castrate- Resistant Prostate Cancer via PPP1CA Inhibition. Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1