Blockchain-Enhanced Anonymous Data Sharing Scheme for 6G-Enabled Smart Healthcare With Distributed Key Generation and Policy Hiding.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2025-03-19 DOI:10.1109/JBHI.2025.3550261
Xujie Ding, Yali Liu, Jianting Ning, Dongdong Chen
{"title":"Blockchain-Enhanced Anonymous Data Sharing Scheme for 6G-Enabled Smart Healthcare With Distributed Key Generation and Policy Hiding.","authors":"Xujie Ding, Yali Liu, Jianting Ning, Dongdong Chen","doi":"10.1109/JBHI.2025.3550261","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, cloud computing has seen widespread application in 6G-enabled smart healthcare, which facilitates the sharing of medical data. Before uploading medical data to cloud server, numerous data sharing schemes employ attribute-based encryption (ABE) to encrypt the sensitive medical data of data owner (DO), and only provide access to date user (DU) who meet certain conditions, which leads to privacy leakage and single points of failure, etc. This paper proposes a blockchain-enhanced anonymous data sharing scheme for 6G-enabled smart healthcare with distributed key generation and policy hiding, termed BADS-ABE, which achieves secure and efficient sharing of sensitive medical data. BADS-ABE designs an anonymous authentication scheme based on Groth signature, which ensures integrity of medical data and protects the identity privacy of DO. Meanwhile, BADS-ABE employs smart contract and Newton interpolation to achieve distributed key generation, which eliminates single point of failure due to the reliance on trusted authority (TA). Moreover, BADS-ABE achieves policy hiding and matching, which avoids the waste of decryption resources and protects the attribute privacy of DO. Finally, security analysis demonstrates that BADS-ABE meets the security requirements of a data sharing scheme for smart healthcare. Performance analysis indicates that BADS-ABE is more efficient compared with similar data sharing schemes.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3550261","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, cloud computing has seen widespread application in 6G-enabled smart healthcare, which facilitates the sharing of medical data. Before uploading medical data to cloud server, numerous data sharing schemes employ attribute-based encryption (ABE) to encrypt the sensitive medical data of data owner (DO), and only provide access to date user (DU) who meet certain conditions, which leads to privacy leakage and single points of failure, etc. This paper proposes a blockchain-enhanced anonymous data sharing scheme for 6G-enabled smart healthcare with distributed key generation and policy hiding, termed BADS-ABE, which achieves secure and efficient sharing of sensitive medical data. BADS-ABE designs an anonymous authentication scheme based on Groth signature, which ensures integrity of medical data and protects the identity privacy of DO. Meanwhile, BADS-ABE employs smart contract and Newton interpolation to achieve distributed key generation, which eliminates single point of failure due to the reliance on trusted authority (TA). Moreover, BADS-ABE achieves policy hiding and matching, which avoids the waste of decryption resources and protects the attribute privacy of DO. Finally, security analysis demonstrates that BADS-ABE meets the security requirements of a data sharing scheme for smart healthcare. Performance analysis indicates that BADS-ABE is more efficient compared with similar data sharing schemes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Blockchain-Enhanced Anonymous Data Sharing Scheme for 6G-Enabled Smart Healthcare With Distributed Key Generation and Policy Hiding. Infusing Multi-Hop Medical Knowledge Into Smaller Language Models for Biomedical Question Answering. TPNET: A time-sensitive small sample multimodal network for cardiotoxicity risk prediction. 3D ShiftBTS: Shift Operation for 3D Multimodal Brain Tumor Segmentation. CA2CL: Cluster-Aware Adversarial Contrastive Learning for Pathological Image Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1