The Development of an Alternative Methodology to Measure the Particle Size Allowed Passing Through Face Masks Using a Scanning Electron Microscopy.

IF 2 3区 工程技术 Q2 ANATOMY & MORPHOLOGY Microscopy Research and Technique Pub Date : 2025-03-19 DOI:10.1002/jemt.24857
J Arenas-Alatorre, S Tehuacanero Cuapa, C Magaña-Zavala, Cecilia Noguez
{"title":"The Development of an Alternative Methodology to Measure the Particle Size Allowed Passing Through Face Masks Using a Scanning Electron Microscopy.","authors":"J Arenas-Alatorre, S Tehuacanero Cuapa, C Magaña-Zavala, Cecilia Noguez","doi":"10.1002/jemt.24857","DOIUrl":null,"url":null,"abstract":"<p><p>At the end of 2019, in the city of Wuhan, China, a new highly infectious coronavirus affecting the respiratory tract was announced. It was named SARS-Cov2, causing deaths in the population. In the face of this global health emergency, many medical and protective supplies were quickly depleted, and some others of dubious quality emerged, including face masks for medical and population use. Given this uncertainty, this working group developed a complementary methodology to the wind tunnel, a technique usually used to measure the efficiency of particle passage in certified masks. A gravity-feed airbrush gun operating at a pressure of 60 PSI was used for this purpose. Saline water at a concentration of 20% NaCl was used as the impact liquid on the face mask, and the deposition time was 1 s, emulating the time of sneezing or coughing. The particles that passed through the face masks were deposited in sample holders for scanning electron microscopy (SEM), where a 0.8 × 0.8 cm slide was placed on their surface and the particles covered with an Au film deposited by sputtering. The sizes of the NaCl particles that were allowed to pass through the face masks were evaluated using field-emission SEM (FSEM). It was found that at 0.5 cm between the surface of the face mask and the deposit surface, the distance between the mask and airbrush nozzle was 2.5 cm, and 1 s deposits, the particles allowed to pass through the K95 and KN95 masks were 85% and 88%, respectively, in the range from 0.2 to 1 to 0 μm, in both cases, the number of particles deposited per unit area was low, 0.1 particles/μm<sup>2</sup>. Based on this methodology, some face masks used daily by the population were evaluated, finding that commercial two-layer polypropylene masks allow NaCl particles larger than 5 μm to pass through, while in the commercial three-layer face mask the NaCl particle size was 2 μm in order.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24857","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

At the end of 2019, in the city of Wuhan, China, a new highly infectious coronavirus affecting the respiratory tract was announced. It was named SARS-Cov2, causing deaths in the population. In the face of this global health emergency, many medical and protective supplies were quickly depleted, and some others of dubious quality emerged, including face masks for medical and population use. Given this uncertainty, this working group developed a complementary methodology to the wind tunnel, a technique usually used to measure the efficiency of particle passage in certified masks. A gravity-feed airbrush gun operating at a pressure of 60 PSI was used for this purpose. Saline water at a concentration of 20% NaCl was used as the impact liquid on the face mask, and the deposition time was 1 s, emulating the time of sneezing or coughing. The particles that passed through the face masks were deposited in sample holders for scanning electron microscopy (SEM), where a 0.8 × 0.8 cm slide was placed on their surface and the particles covered with an Au film deposited by sputtering. The sizes of the NaCl particles that were allowed to pass through the face masks were evaluated using field-emission SEM (FSEM). It was found that at 0.5 cm between the surface of the face mask and the deposit surface, the distance between the mask and airbrush nozzle was 2.5 cm, and 1 s deposits, the particles allowed to pass through the K95 and KN95 masks were 85% and 88%, respectively, in the range from 0.2 to 1 to 0 μm, in both cases, the number of particles deposited per unit area was low, 0.1 particles/μm2. Based on this methodology, some face masks used daily by the population were evaluated, finding that commercial two-layer polypropylene masks allow NaCl particles larger than 5 μm to pass through, while in the commercial three-layer face mask the NaCl particle size was 2 μm in order.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microscopy Research and Technique
Microscopy Research and Technique 医学-解剖学与形态学
CiteScore
5.30
自引率
20.00%
发文量
233
审稿时长
4.7 months
期刊介绍: Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.
期刊最新文献
The Development of an Alternative Methodology to Measure the Particle Size Allowed Passing Through Face Masks Using a Scanning Electron Microscopy. Correction to "Implication and Evaluations of Indoor Soot Particles From Domestic Fuel Energy Sources Using Characterization Techniques in Northern Pakistan". Microscopic Imaging of Alpha Particle Trajectory and Its Application for Radionuclide Distribution Measurement in Cell. Resolution Deterioration of Scanning Transmission Electron Microscope in a Windowed Gas Cell. A Comparative Analysis of Physiological and Morphological Alteration in Mytilus galloprovincialis After Exposure to Polyethylene Glycol (PEG).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1