Stephan O Adler, Anastasia Kitashova, Ana Bulović, Thomas Nägele, Edda Klipp
{"title":"Plant cold acclimation and its impact on sensitivity of carbohydrate metabolism.","authors":"Stephan O Adler, Anastasia Kitashova, Ana Bulović, Thomas Nägele, Edda Klipp","doi":"10.1038/s41540-025-00505-1","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to acclimate to changing environmental conditions is essential for the fitness and survival of plants. Not only are seasonal differences challenging for plants growing in different habitats but, facing climate change, the likelihood of encountering extreme weather events increases. Previous studies of acclimation processes of Arabidopsis thaliana to changes in temperature and light conditions have revealed a multigenic trait comprising and affecting multiple layers of molecular organization. Here, a combination of experimental and computational methods was applied to study the effects of changing light intensities during cold acclimation on the central carbohydrate metabolism of Arabidopsis thaliana leaf tissue. Mathematical modeling, simulation and sensitivity analysis suggested an important role of hexose phosphate balance for stabilization of photosynthetic CO<sub>2</sub> fixation. Experimental validation revealed a profound effect of temperature on the sensitivity of carbohydrate metabolism.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"28"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00505-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to acclimate to changing environmental conditions is essential for the fitness and survival of plants. Not only are seasonal differences challenging for plants growing in different habitats but, facing climate change, the likelihood of encountering extreme weather events increases. Previous studies of acclimation processes of Arabidopsis thaliana to changes in temperature and light conditions have revealed a multigenic trait comprising and affecting multiple layers of molecular organization. Here, a combination of experimental and computational methods was applied to study the effects of changing light intensities during cold acclimation on the central carbohydrate metabolism of Arabidopsis thaliana leaf tissue. Mathematical modeling, simulation and sensitivity analysis suggested an important role of hexose phosphate balance for stabilization of photosynthetic CO2 fixation. Experimental validation revealed a profound effect of temperature on the sensitivity of carbohydrate metabolism.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.