ADAM9 mediates Cisplatin resistance in gastric cancer cells through DNA damage response pathway.

IF 2.8 4区 医学 Q2 ONCOLOGY Medical Oncology Pub Date : 2025-03-20 DOI:10.1007/s12032-025-02645-0
Xiao-Yu Zhang, Chan-Yuan Zhao, Jia-Ming Dong, Cun-Pu Du, Chen-Li Zhang, Ai-Jun Yang, Quan Zhou, Wei Liu, Yun Dang, Li-Na Shang, Yong-Ning Zhou, Yu-Ping Wang, Chen-Yu Wang, Min Wang, Min Li
{"title":"ADAM9 mediates Cisplatin resistance in gastric cancer cells through DNA damage response pathway.","authors":"Xiao-Yu Zhang, Chan-Yuan Zhao, Jia-Ming Dong, Cun-Pu Du, Chen-Li Zhang, Ai-Jun Yang, Quan Zhou, Wei Liu, Yun Dang, Li-Na Shang, Yong-Ning Zhou, Yu-Ping Wang, Chen-Yu Wang, Min Wang, Min Li","doi":"10.1007/s12032-025-02645-0","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer is one of the most common malignant tumors in the world. The occurrence of chemotherapy resistance seriously affects the survival and prognosis of middle and advanced patients. Enhancing DNA repair ability is one of the important mechanisms of chemotherapy resistance. ADAM9, a member of the disintegrin and metalloproteinase family, is involved in many biological processes, such as tumor cells proliferation, apoptosis, invasion and migration, vascular invasion, and drug resistance. In this study, we found that the high expression of ADAM9 in gastric cancer tissues was associated with a variety of clinicopathological factors and poor prognosis in patients. Gastric cancer cells with high ADAM9 expression reduced sensitivity to Cisplatin, decreased DNA damage, increased expression of ATM and CHK2, the key proteins in DNA damage repair pathway, and improved cancer cells survival rate. Further studies showed that the expression of ADAM9 was selectively interfered with gastric cancer cells, the expression levels of ATM and CHK2 were decreased, while the expression of damage protein γ-H2AX was significantly increased, the degree of DNA damage was increased, and the sensitivity of gastric cancer cells to Cisplatin was significantly enhanced. It is suggested that ADAM9 is involved in Cisplatin resistance in gastric cancer cells, and its mechanism is related to the activation of ATM-CHK2 pathway in DNA damage repair. These data demonstrate that ADAM9 plays a pro-cancer role and mediates Cisplatin resistance in gastric cancer, which may be a new target to overcome chemotherapy resistance.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 4","pages":"122"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-025-02645-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gastric cancer is one of the most common malignant tumors in the world. The occurrence of chemotherapy resistance seriously affects the survival and prognosis of middle and advanced patients. Enhancing DNA repair ability is one of the important mechanisms of chemotherapy resistance. ADAM9, a member of the disintegrin and metalloproteinase family, is involved in many biological processes, such as tumor cells proliferation, apoptosis, invasion and migration, vascular invasion, and drug resistance. In this study, we found that the high expression of ADAM9 in gastric cancer tissues was associated with a variety of clinicopathological factors and poor prognosis in patients. Gastric cancer cells with high ADAM9 expression reduced sensitivity to Cisplatin, decreased DNA damage, increased expression of ATM and CHK2, the key proteins in DNA damage repair pathway, and improved cancer cells survival rate. Further studies showed that the expression of ADAM9 was selectively interfered with gastric cancer cells, the expression levels of ATM and CHK2 were decreased, while the expression of damage protein γ-H2AX was significantly increased, the degree of DNA damage was increased, and the sensitivity of gastric cancer cells to Cisplatin was significantly enhanced. It is suggested that ADAM9 is involved in Cisplatin resistance in gastric cancer cells, and its mechanism is related to the activation of ATM-CHK2 pathway in DNA damage repair. These data demonstrate that ADAM9 plays a pro-cancer role and mediates Cisplatin resistance in gastric cancer, which may be a new target to overcome chemotherapy resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Oncology
Medical Oncology 医学-肿瘤学
CiteScore
4.20
自引率
2.90%
发文量
259
审稿时长
1.4 months
期刊介绍: Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.
期刊最新文献
ADAM9 mediates Cisplatin resistance in gastric cancer cells through DNA damage response pathway. Integrative analysis of ubiquitination-related genes identifies HSPA1A as a critical regulator in colorectal cancer progression. An investigative study on the impact of DLK1 and NCoR1 knockdown by siRNA transfection on endometrial cancer proliferation: unveiling notch interactions. Addition of thalidomide for prevention of chemotherapy-induced nausea and vomiting in the second cycle after the failure of four-drug regimen in the first cycle. Isoliquiritigenin attenuates tumor progression and PD-L1 expression by inhibiting the phosphorylation of STAT3 in melanoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1