Tamlyn K Gangiah, Arghavan Alisoltani, Matthys Potgieter, Liam Bell, Elizabeth Ross, Arash Iranzadeh, Zac McDonald, Imane Allali, Smritee Dabee, Shaun Barnabas, Jonathan M Blackburn, David L Tabb, Linda-Gail Bekker, Heather B Jaspan, Jo-Ann S Passmore, Nicola Mulder, Lindi Masson
{"title":"Exploring the female genital tract mycobiome in young South African women using metaproteomics.","authors":"Tamlyn K Gangiah, Arghavan Alisoltani, Matthys Potgieter, Liam Bell, Elizabeth Ross, Arash Iranzadeh, Zac McDonald, Imane Allali, Smritee Dabee, Shaun Barnabas, Jonathan M Blackburn, David L Tabb, Linda-Gail Bekker, Heather B Jaspan, Jo-Ann S Passmore, Nicola Mulder, Lindi Masson","doi":"10.1186/s40168-025-02066-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Female genital tract (FGT) diseases such as bacterial vaginosis (BV) and sexually transmitted infections are prevalent in South Africa, with young women being at an increased risk. Since imbalances in the FGT microbiome are associated with FGT diseases, it is vital to investigate the factors that influence FGT health. The mycobiome plays an important role in regulating mucosal health, especially when the bacterial component is disturbed. However, we have a limited understanding of the FGT mycobiome since many studies have focused on bacterial communities and have neglected low-abundance taxonomic groups, such as fungi. To reduce this knowledge deficit, we present the first large-scale metaproteomic study to define the taxonomic composition and potential functional processes of the FGT mycobiome in South African reproductive-age women.</p><p><strong>Results: </strong>We examined FGT fungal communities present in 123 women by collecting lateral vaginal wall swabs for liquid chromatography-tandem mass spectrometry. From this, 39 different fungal genera were identified, with Candida dominating the mycobiome (53.2% relative abundance). We observed changes in relative abundance at the protein, genus, and functional (gene ontology biological processes) level between BV states. In women with BV, Malassezia and Conidiobolus proteins were more abundant, while Candida proteins were less abundant compared to BV-negative women. Correspondingly, Nugent scores were negatively associated with total fungal protein abundance. The clinical variables, Nugent score, pro-inflammatory cytokines, chemokines, vaginal pH, Chlamydia trachomatis, and the presence of clue cells were associated with fungal community composition.</p><p><strong>Conclusions: </strong>The results of this study revealed the diversity of FGT fungal communities, setting the groundwork for understanding the FGT mycobiome. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"76"},"PeriodicalIF":13.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02066-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Female genital tract (FGT) diseases such as bacterial vaginosis (BV) and sexually transmitted infections are prevalent in South Africa, with young women being at an increased risk. Since imbalances in the FGT microbiome are associated with FGT diseases, it is vital to investigate the factors that influence FGT health. The mycobiome plays an important role in regulating mucosal health, especially when the bacterial component is disturbed. However, we have a limited understanding of the FGT mycobiome since many studies have focused on bacterial communities and have neglected low-abundance taxonomic groups, such as fungi. To reduce this knowledge deficit, we present the first large-scale metaproteomic study to define the taxonomic composition and potential functional processes of the FGT mycobiome in South African reproductive-age women.
Results: We examined FGT fungal communities present in 123 women by collecting lateral vaginal wall swabs for liquid chromatography-tandem mass spectrometry. From this, 39 different fungal genera were identified, with Candida dominating the mycobiome (53.2% relative abundance). We observed changes in relative abundance at the protein, genus, and functional (gene ontology biological processes) level between BV states. In women with BV, Malassezia and Conidiobolus proteins were more abundant, while Candida proteins were less abundant compared to BV-negative women. Correspondingly, Nugent scores were negatively associated with total fungal protein abundance. The clinical variables, Nugent score, pro-inflammatory cytokines, chemokines, vaginal pH, Chlamydia trachomatis, and the presence of clue cells were associated with fungal community composition.
Conclusions: The results of this study revealed the diversity of FGT fungal communities, setting the groundwork for understanding the FGT mycobiome. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.