Christos Batianis, Rik P van Rosmalen, Pedro Moñino Fernandez, Konstantinos Labanaris, Enrique Asin-Garcia, Maria Martin-Pascual, Markus Jeschek, Ruud Weusthuis, Maria Suarez-Diez, Vitor A P Martins Dos Santos
{"title":"Computer-assisted, multi-level optimization of malonyl-CoA availability in Pseudomonas putida.","authors":"Christos Batianis, Rik P van Rosmalen, Pedro Moñino Fernandez, Konstantinos Labanaris, Enrique Asin-Garcia, Maria Martin-Pascual, Markus Jeschek, Ruud Weusthuis, Maria Suarez-Diez, Vitor A P Martins Dos Santos","doi":"10.1016/j.ymben.2025.03.008","DOIUrl":null,"url":null,"abstract":"<p><p>Malonyl-CoA is the major precursor for the biosynthesis of diverse industrially valuable products such as fatty acids/alcohols, flavonoids, and polyketides. However, its intracellular availability is limited in most microbial hosts, hampering the industrial production of such chemicals. To address this limitation, we present a multi-level optimization workflow using modern metabolic engineering technologies to systematically increase the malonyl-CoA levels in Pseudomonas putida. The workflow involves the identification of gene downregulations, chassis selection, and optimization of the acetyl-CoA carboxylase complex through ribosome binding site engineering. Computational tools and high-throughput screening with a malonyl-CoA biosensor enabled the rapid evaluation of numerous genetic targets. Combining the most beneficial targets led to a 5.8-fold enhancement in the production titer of the valuable polyketide phloroglucinol. This study demonstrates the effective integration of computational and genetic technologies for engineering P. putida, opening new avenues for the development of industrially relevant strains and the investigation of fundamental biological questions.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2025.03.008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Malonyl-CoA is the major precursor for the biosynthesis of diverse industrially valuable products such as fatty acids/alcohols, flavonoids, and polyketides. However, its intracellular availability is limited in most microbial hosts, hampering the industrial production of such chemicals. To address this limitation, we present a multi-level optimization workflow using modern metabolic engineering technologies to systematically increase the malonyl-CoA levels in Pseudomonas putida. The workflow involves the identification of gene downregulations, chassis selection, and optimization of the acetyl-CoA carboxylase complex through ribosome binding site engineering. Computational tools and high-throughput screening with a malonyl-CoA biosensor enabled the rapid evaluation of numerous genetic targets. Combining the most beneficial targets led to a 5.8-fold enhancement in the production titer of the valuable polyketide phloroglucinol. This study demonstrates the effective integration of computational and genetic technologies for engineering P. putida, opening new avenues for the development of industrially relevant strains and the investigation of fundamental biological questions.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.