Bisphenol-S exposure of zebrafish unveils the hidden risks of bisphenol paradigm with growth, developmental, and behavioral impacts similar to bisphenol-A.
{"title":"Bisphenol-S exposure of zebrafish unveils the hidden risks of bisphenol paradigm with growth, developmental, and behavioral impacts similar to bisphenol-A.","authors":"Divani Shanika, Gayani Rajapaksa","doi":"10.1038/s41598-025-91984-z","DOIUrl":null,"url":null,"abstract":"<p><p>The introduction of bisphenol-S (BPS) in substitution of bisphenol-A (BPA) has become argumentative owing to their endocrine destructive properties and insufficient comparative ecotoxicity assessments. Thus, comparative effects of long-term, low-dose BPA and BPS exposure on the development of juvenile zebrafish (Danio rerio) were investigated. Juvenile zebrafish (age: 21 days; weight: ~ 61.5 mg; length: ~ 7.56 mm) were exposed to environmentally-relevant 50 µg/L of BPA, BPS, and control for ~ 60 days in triplicate. Both BPA and BPS significantly increased length (p = 0.00), weight (p = 0.00), specific growth rate (p = 0.00), female preponderance (p = 0.003), mortality (p = 0.017), ammonia excretion (p = 0.00), and aggression (p = 0.00) in zebrafish compared to control. Both bisphenols significantly reduced fish swimming speed in a comparable manner (p = 0.001). A notably higher female-biased-sex ratio was observed in BPS than in BPA (p = 0.003). The length gain (p = 0.014) and aggression (p = 0.032) were higher in BPA-treated fish than in BPS. However, a significant difference was not shown in body mass index (p = 0.295) and condition factor (p = 0.256) between bisphenols and control (p < 0.05). BPA and BPS exposure led to hyperplasia, mucous secretion, aneurism in fish gills, vacuolization and necrosis in liver. Therefore, BPS (~ 50 µg/L) also imposes noteworthy threats to aquatic wildlife, emphasizing the necessity of toxicity assessments and regular monitoring aiming at bespoken environmental standards for freshwater.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9560"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91984-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of bisphenol-S (BPS) in substitution of bisphenol-A (BPA) has become argumentative owing to their endocrine destructive properties and insufficient comparative ecotoxicity assessments. Thus, comparative effects of long-term, low-dose BPA and BPS exposure on the development of juvenile zebrafish (Danio rerio) were investigated. Juvenile zebrafish (age: 21 days; weight: ~ 61.5 mg; length: ~ 7.56 mm) were exposed to environmentally-relevant 50 µg/L of BPA, BPS, and control for ~ 60 days in triplicate. Both BPA and BPS significantly increased length (p = 0.00), weight (p = 0.00), specific growth rate (p = 0.00), female preponderance (p = 0.003), mortality (p = 0.017), ammonia excretion (p = 0.00), and aggression (p = 0.00) in zebrafish compared to control. Both bisphenols significantly reduced fish swimming speed in a comparable manner (p = 0.001). A notably higher female-biased-sex ratio was observed in BPS than in BPA (p = 0.003). The length gain (p = 0.014) and aggression (p = 0.032) were higher in BPA-treated fish than in BPS. However, a significant difference was not shown in body mass index (p = 0.295) and condition factor (p = 0.256) between bisphenols and control (p < 0.05). BPA and BPS exposure led to hyperplasia, mucous secretion, aneurism in fish gills, vacuolization and necrosis in liver. Therefore, BPS (~ 50 µg/L) also imposes noteworthy threats to aquatic wildlife, emphasizing the necessity of toxicity assessments and regular monitoring aiming at bespoken environmental standards for freshwater.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.