The effect of ionizing radiation on testicular interstitial stromal cells.

IF 2.7 3区 医学 Q2 OBSTETRICS & GYNECOLOGY Reproductive Medicine and Biology Pub Date : 2025-03-19 eCollection Date: 2025-01-01 DOI:10.1002/rmb2.12639
Esraa Tamam, Chen Yan, Reiko Sekiya, Tao-Sheng Li
{"title":"The effect of ionizing radiation on testicular interstitial stromal cells.","authors":"Esraa Tamam, Chen Yan, Reiko Sekiya, Tao-Sheng Li","doi":"10.1002/rmb2.12639","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Testis is one of the most radiosensitive tissues. Interstitial stromal cells play a supportive role in male fertility, but radiation-induced damage to those cells has not yet been well understood. We aimed to investigate radiation-induced changes in interstitial stromal cells in the testis.</p><p><strong>Methods: </strong>Adult male C57BL/6N mice (8 weeks) received a single pelvic exposure to a relatively high dose (1 Gy) or a very high dose (8 Gy) X-ray. We collected the testicular tissues for evaluation at 1, 9, and 60 days after irradiation.</p><p><strong>Results: </strong>We detected a recoverable moderate degeneration of seminiferous tubules after 1 Gy exposure but an irreversible severe damage to the testis after 8 Gy exposure. Immunostaining results revealed that 1 Gy exposure induced DNA damage at day 1, upregulated intratubular GDNF at days 1 and 9, upregulated FGF at all time points, and upregulated CSF-1R at day 9. In contrast, 8 Gy exposure induced DNA damage at days 1 and 9, upregulated intratubular GDNF at days 1 and 9, downregulated CD105 at day 60, and upregulated FGF at all time points.</p><p><strong>Conclusion: </strong>Radiation-induced dynamic changes to interstitial stromal cells in the testis. Upregulated interstitial CSF-1R and FGF2 may support spermatogenesis recovery after high-dose radiation.</p>","PeriodicalId":21116,"journal":{"name":"Reproductive Medicine and Biology","volume":"24 1","pages":"e12639"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920815/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/rmb2.12639","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Testis is one of the most radiosensitive tissues. Interstitial stromal cells play a supportive role in male fertility, but radiation-induced damage to those cells has not yet been well understood. We aimed to investigate radiation-induced changes in interstitial stromal cells in the testis.

Methods: Adult male C57BL/6N mice (8 weeks) received a single pelvic exposure to a relatively high dose (1 Gy) or a very high dose (8 Gy) X-ray. We collected the testicular tissues for evaluation at 1, 9, and 60 days after irradiation.

Results: We detected a recoverable moderate degeneration of seminiferous tubules after 1 Gy exposure but an irreversible severe damage to the testis after 8 Gy exposure. Immunostaining results revealed that 1 Gy exposure induced DNA damage at day 1, upregulated intratubular GDNF at days 1 and 9, upregulated FGF at all time points, and upregulated CSF-1R at day 9. In contrast, 8 Gy exposure induced DNA damage at days 1 and 9, upregulated intratubular GDNF at days 1 and 9, downregulated CD105 at day 60, and upregulated FGF at all time points.

Conclusion: Radiation-induced dynamic changes to interstitial stromal cells in the testis. Upregulated interstitial CSF-1R and FGF2 may support spermatogenesis recovery after high-dose radiation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
5.90%
发文量
53
审稿时长
20 weeks
期刊介绍: Reproductive Medicine and Biology (RMB) is the official English journal of the Japan Society for Reproductive Medicine, the Japan Society of Fertilization and Implantation, the Japan Society of Andrology, and publishes original research articles that report new findings or concepts in all aspects of reproductive phenomena in all kinds of mammals. Papers in any of the following fields will be considered: andrology, endocrinology, oncology, immunology, genetics, function of gonads and genital tracts, erectile dysfunction, gametogenesis, function of accessory sex organs, fertilization, embryogenesis, embryo manipulation, pregnancy, implantation, ontogenesis, infectious disease, contraception, etc.
期刊最新文献
The effect of ionizing radiation on testicular interstitial stromal cells. Correction to "Age, sexual abstinence duration, sperm morphology, and motility are predictors of sperm DNA fragmentation". Human oocyte capacitation culture: Essential step toward hormone-free assisted reproductive technology. Influence of lifestyle and the circadian clock on reproduction. Activation of motility and chemotaxis in the spermatozoa.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1