{"title":"Deciphering the influence of the [Fe-S] cluster of tRNA thiolation enzymes on tRNA binding.","authors":"Sylvain Gervason, Sambuddha Sen, Sylvain Caillat, Jean-Luc Ravanat, Djemel Hamdane, Beatrice Golinelli-Pimpaneau","doi":"10.1261/rna.080292.124","DOIUrl":null,"url":null,"abstract":"<p><p>Iron-sulfur clusters [Fe-S] play crucial roles in diverse biological reactions, often serving as prosthetic groups for enzymes. Specifically, certain tRNA-modifying enzymes utilize these clusters to catalyze the thiolation of specific nucleosides. While the participation of [4Fe-4S] clusters in such catalytic processes is known, their potential influence on tRNA binding remains unexplored. In this study, we examine the impact of the cluster on the affinity for tRNA of TtuI from the archer Methanococcus maripaludis, an enzyme responsible for the formation of 4-thiouridine at position 8 in tRNAs of archaea and bacteria, as well as Escherichia coli TtcA that catalyzes the biosynthesis of 2-thiocytidine at position 32 in bacterial tRNAs. For this purpose, we compare the change of fluorescence properties of judiciously located tryptophans upon tRNA binding between the apo-enzyme (lacking the cluster) and the holo-enzyme (incorporating a reconstituted cluster). Our results indicate that the presence of the [4Fe-4S] cluster does not alter the affinity of the thiolases for tRNA, thus ruling out any direct involvement of the cluster in tRNA binding and emphasizing the purely catalytic role of the [4Fe-4S] cluster in tRNA thiolation.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080292.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Iron-sulfur clusters [Fe-S] play crucial roles in diverse biological reactions, often serving as prosthetic groups for enzymes. Specifically, certain tRNA-modifying enzymes utilize these clusters to catalyze the thiolation of specific nucleosides. While the participation of [4Fe-4S] clusters in such catalytic processes is known, their potential influence on tRNA binding remains unexplored. In this study, we examine the impact of the cluster on the affinity for tRNA of TtuI from the archer Methanococcus maripaludis, an enzyme responsible for the formation of 4-thiouridine at position 8 in tRNAs of archaea and bacteria, as well as Escherichia coli TtcA that catalyzes the biosynthesis of 2-thiocytidine at position 32 in bacterial tRNAs. For this purpose, we compare the change of fluorescence properties of judiciously located tryptophans upon tRNA binding between the apo-enzyme (lacking the cluster) and the holo-enzyme (incorporating a reconstituted cluster). Our results indicate that the presence of the [4Fe-4S] cluster does not alter the affinity of the thiolases for tRNA, thus ruling out any direct involvement of the cluster in tRNA binding and emphasizing the purely catalytic role of the [4Fe-4S] cluster in tRNA thiolation.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.