AP2XII-9 is essential for parasite growth and suppresses bradyzoite differentiation in Toxoplasma gondii.

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY The FASEB Journal Pub Date : 2025-03-31 DOI:10.1096/fj.202402593RR
Xiao-Jing Wu, Meng Wang, Nian-Zhang Zhang, Ting-Ting Li, Jin Gao, Li-Xiu Sun, Xing-Quan Zhu, Jin-Lei Wang
{"title":"AP2XII-9 is essential for parasite growth and suppresses bradyzoite differentiation in Toxoplasma gondii.","authors":"Xiao-Jing Wu, Meng Wang, Nian-Zhang Zhang, Ting-Ting Li, Jin Gao, Li-Xiu Sun, Xing-Quan Zhu, Jin-Lei Wang","doi":"10.1096/fj.202402593RR","DOIUrl":null,"url":null,"abstract":"<p><p>Cyst formation, resulting from the differentiation of rapidly replicating tachyzoites into slowly growing bradyzoites, is the primary cause of chronic toxoplasmosis. Although the mechanisms governing bradyzoite differentiation have been partially elucidated, they remain incompletely understood. In this study, we show that the transcription factor AP2XII-9 is localized in the nucleus and exhibits periodic expression during the tachyzoite stage, with peak expression observed during the synthesis and mitosis phases. Conditional knockdown of AP2XII-9 in both the type I RH strain and type II cyst-forming Pru strain revealed that AP2XII-9 plays a critical role in the lytic cycle by regulating the formation of the inner membrane complex, proper apicoplast inheritance, and normal cell division, underscoring its essential role in T. gondii growth. Furthermore, depletion of AP2XII-9 induced bradyzoite differentiation even in the absence of alkaline stress. Transcriptomic analysis revealed that the deletion of AP2XII-9 resulted in the downregulation of tachyzoite growth-related genes and upregulation of a series of bradyzoite-specific genes. Taken together, these findings indicate that AP2XII-9 is essential for maintaining the rapid and normal replication of tachyzoites while actively repressing bradyzoite differentiation, reflecting the complexity of the mechanisms underlying bradyzoite differentiation.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 6","pages":"e70476"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1096/fj.202402593RR","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyst formation, resulting from the differentiation of rapidly replicating tachyzoites into slowly growing bradyzoites, is the primary cause of chronic toxoplasmosis. Although the mechanisms governing bradyzoite differentiation have been partially elucidated, they remain incompletely understood. In this study, we show that the transcription factor AP2XII-9 is localized in the nucleus and exhibits periodic expression during the tachyzoite stage, with peak expression observed during the synthesis and mitosis phases. Conditional knockdown of AP2XII-9 in both the type I RH strain and type II cyst-forming Pru strain revealed that AP2XII-9 plays a critical role in the lytic cycle by regulating the formation of the inner membrane complex, proper apicoplast inheritance, and normal cell division, underscoring its essential role in T. gondii growth. Furthermore, depletion of AP2XII-9 induced bradyzoite differentiation even in the absence of alkaline stress. Transcriptomic analysis revealed that the deletion of AP2XII-9 resulted in the downregulation of tachyzoite growth-related genes and upregulation of a series of bradyzoite-specific genes. Taken together, these findings indicate that AP2XII-9 is essential for maintaining the rapid and normal replication of tachyzoites while actively repressing bradyzoite differentiation, reflecting the complexity of the mechanisms underlying bradyzoite differentiation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The FASEB Journal
The FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
期刊最新文献
AP2XII-9 is essential for parasite growth and suppresses bradyzoite differentiation in Toxoplasma gondii. Effects of environmental salinity on global and endocrine-specific transcriptomic profiles in the caudal neurosecretory system of salmonid fishes. Exploring the relationship between extracellular vesicles, the dendritic cell immunoreceptor, and microRNA-155 in an in vivo model of HIV-1 infection to understand the disease and develop new treatments. Insights into the single-cell transcriptome characteristics of porcine endometrium with embryo loss Establishment of a rat model of pediatric-to-adult kidney transplantation to study the early rapid compensatory growth of the grafts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1