Aziza Almanakly, Beatriz Yankelevich, Max Hays, Bharath Kannan, Réouven Assouly, Alex Greene, Michael Gingras, Bethany M. Niedzielski, Hannah Stickler, Mollie E. Schwartz, Kyle Serniak, Joel Î-j. Wang, Terry P. Orlando, Simon Gustavsson, Jeffrey A. Grover, William D. Oliver
{"title":"Deterministic remote entanglement using a chiral quantum interconnect","authors":"Aziza Almanakly, Beatriz Yankelevich, Max Hays, Bharath Kannan, Réouven Assouly, Alex Greene, Michael Gingras, Bethany M. Niedzielski, Hannah Stickler, Mollie E. Schwartz, Kyle Serniak, Joel Î-j. Wang, Terry P. Orlando, Simon Gustavsson, Jeffrey A. Grover, William D. Oliver","doi":"10.1038/s41567-025-02811-1","DOIUrl":null,"url":null,"abstract":"<p>Quantum interconnects facilitate entanglement distribution between non-local computational nodes in a quantum network. For superconducting processors, microwave photons are a natural means to mediate this distribution. However, many existing architectures limit node connectivity and directionality. In this work, we construct a chiral quantum interconnect between two nominally identical modules in separate microwave packages. Our approach uses quantum interference to emit and absorb microwave photons on demand and in a chosen direction between these modules. We optimize our protocol using model-free reinforcement learning to maximize the absorption efficiency. By halting the emission process halfway through its duration, we generate remote entanglement between modules in the form of a four-qubit <i>W</i> state with approximately 62% fidelity in each direction, limited mainly by propagation loss. This quantum network architecture enables all-to-all connectivity between non-local processors for modular and extensible quantum simulation and computation.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"73 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02811-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum interconnects facilitate entanglement distribution between non-local computational nodes in a quantum network. For superconducting processors, microwave photons are a natural means to mediate this distribution. However, many existing architectures limit node connectivity and directionality. In this work, we construct a chiral quantum interconnect between two nominally identical modules in separate microwave packages. Our approach uses quantum interference to emit and absorb microwave photons on demand and in a chosen direction between these modules. We optimize our protocol using model-free reinforcement learning to maximize the absorption efficiency. By halting the emission process halfway through its duration, we generate remote entanglement between modules in the form of a four-qubit W state with approximately 62% fidelity in each direction, limited mainly by propagation loss. This quantum network architecture enables all-to-all connectivity between non-local processors for modular and extensible quantum simulation and computation.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.