Han Xu, Jianhua Han, Maxime Babics, Luis Huerta Hernandez, Diego Rosas Villalva, Matteo Sanviti, Jules Bertrandie, Yongcao Zhang, Ye Liu, Hu Chen, Lingyun Zhao, Joel Troughton, Jaime Martin, Frédéric Laquai, Stefaan De Wolf, Derya Baran
{"title":"Elucidating the photodegradation pathways of polymer donors for organic solar cells with seven months of outdoor operational stability","authors":"Han Xu, Jianhua Han, Maxime Babics, Luis Huerta Hernandez, Diego Rosas Villalva, Matteo Sanviti, Jules Bertrandie, Yongcao Zhang, Ye Liu, Hu Chen, Lingyun Zhao, Joel Troughton, Jaime Martin, Frédéric Laquai, Stefaan De Wolf, Derya Baran","doi":"10.1038/s41566-025-01644-x","DOIUrl":null,"url":null,"abstract":"<p>The operating lifetime under real-world climates is a critical metric to evaluate the commercial potential of any photovoltaic technology. Organic solar cells (OSCs) have experienced rapid breakthroughs in performance over the past decade owing to advances in device and materials engineering, including interfaces, electron acceptors, and donors. However, the intrinsic photodegradation of polymer donors remains poorly understood, and a path to stable OSCs is yet to be demonstrated under outdoor testing conditions. Herein we elucidate the side-chain-induced degradation mechanism in polymer donors and present an outdoor stability database covering 15 representative non-fullerene-based OSCs, supported by in-lab photostability and thermostability analysis. By understanding the performance losses induced by several photoactive layers and interfaces, we demonstrate that encapsulated non-fullerene-based OSCs can retain 91% of the initial efficiency after seven months of operation under hot and sunny Saudi Arabian climates. These findings reveal encouraging prospects of non-fullerene-based OSCs for outdoor applications.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"1 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01644-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The operating lifetime under real-world climates is a critical metric to evaluate the commercial potential of any photovoltaic technology. Organic solar cells (OSCs) have experienced rapid breakthroughs in performance over the past decade owing to advances in device and materials engineering, including interfaces, electron acceptors, and donors. However, the intrinsic photodegradation of polymer donors remains poorly understood, and a path to stable OSCs is yet to be demonstrated under outdoor testing conditions. Herein we elucidate the side-chain-induced degradation mechanism in polymer donors and present an outdoor stability database covering 15 representative non-fullerene-based OSCs, supported by in-lab photostability and thermostability analysis. By understanding the performance losses induced by several photoactive layers and interfaces, we demonstrate that encapsulated non-fullerene-based OSCs can retain 91% of the initial efficiency after seven months of operation under hot and sunny Saudi Arabian climates. These findings reveal encouraging prospects of non-fullerene-based OSCs for outdoor applications.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.