Chun Yang, Liwei Shao, Yi Deng, Jiahang Wang, Hexiang Zhai
{"title":"SwinCNet leveraging Swin Transformer V2 and CNN for precise color correction and detail enhancement in underwater image restoration","authors":"Chun Yang, Liwei Shao, Yi Deng, Jiahang Wang, Hexiang Zhai","doi":"10.3389/fmars.2025.1523729","DOIUrl":null,"url":null,"abstract":"Underwater image restoration confronts three major challenges: color distortion, contrast degradation, and detail blurring caused by light absorption and scattering. Current methods face difficulties in effectively balancing local detail preservation with global information integration. This study proposes SwinCNet, an innovative deep learning architecture that incorporates an enhanced Swin Transformer V2 following primary convolutional layers to achieve synergistic processing of local details and global dependencies. The architecture introduces two novel components: a dual-path feature extraction strategy and an adaptive feature fusion mechanism. These components work in tandem to preserve local structural information while strengthening cross-regional feature correlations during the encoding phase and enable precise multi-scale feature integration during decoding. Experimental results on the EUVP dataset demonstrate that SwinCNet achieves PSNR values of 24.1075 dB and 28.1944 dB on the EUVP-UI and EUVP-UD subsets, respectively. Furthermore, the model demonstrates competitive performance in reference-free evaluation metrics compared to existing methods while processing 512×512 resolution images in merely 30.32 ms—a significant efficiency improvement over conventional approaches, confirming its practical applicability in real-world underwater scenarios.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"27 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1523729","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Underwater image restoration confronts three major challenges: color distortion, contrast degradation, and detail blurring caused by light absorption and scattering. Current methods face difficulties in effectively balancing local detail preservation with global information integration. This study proposes SwinCNet, an innovative deep learning architecture that incorporates an enhanced Swin Transformer V2 following primary convolutional layers to achieve synergistic processing of local details and global dependencies. The architecture introduces two novel components: a dual-path feature extraction strategy and an adaptive feature fusion mechanism. These components work in tandem to preserve local structural information while strengthening cross-regional feature correlations during the encoding phase and enable precise multi-scale feature integration during decoding. Experimental results on the EUVP dataset demonstrate that SwinCNet achieves PSNR values of 24.1075 dB and 28.1944 dB on the EUVP-UI and EUVP-UD subsets, respectively. Furthermore, the model demonstrates competitive performance in reference-free evaluation metrics compared to existing methods while processing 512×512 resolution images in merely 30.32 ms—a significant efficiency improvement over conventional approaches, confirming its practical applicability in real-world underwater scenarios.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.