Shuaiguo Zhao, Zhenhua Tian, Chen Shen, Shujie Yang, Jianping Xia, Teng Li, Zhemiao Xie, Peiran Zhang, Luke P. Lee, Steven A. Cummer, Tony Jun Huang
{"title":"Topological acoustofluidics","authors":"Shuaiguo Zhao, Zhenhua Tian, Chen Shen, Shujie Yang, Jianping Xia, Teng Li, Zhemiao Xie, Peiran Zhang, Luke P. Lee, Steven A. Cummer, Tony Jun Huang","doi":"10.1038/s41563-025-02169-y","DOIUrl":null,"url":null,"abstract":"<p>The complex interaction of spin, valley and lattice degrees of freedom allows natural materials to create exotic topological phenomena. The interplay between topological wave materials and hydrodynamics could offer promising opportunities for visualizing topological physics and manipulating bioparticle unconventionally. Here we present topological acoustofluidic chips to illustrate the complex interaction between elastic valley spin and nonlinear fluid dynamics. We created valley streaming vortices and chiral swirling patterns for backward-immune particle transport. Using tracer particles, we observed arrays of clockwise and anticlockwise valley vortices due to an increase in elastic spin density. Moreover, we discovered exotic topological pressure wells in fluids, creating nanoscale trapping fields for manipulating DNA molecules. We also found a 93.2% modulation in the bandwidth of edge states, dependent on the orientation of the substrate’s crystallographic structure. Our study sets the stage for uncovering topological acoustofluidic phenomena and visualizing elastic valley spin, revealing the potential for topological-material applications in life sciences.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"40 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02169-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The complex interaction of spin, valley and lattice degrees of freedom allows natural materials to create exotic topological phenomena. The interplay between topological wave materials and hydrodynamics could offer promising opportunities for visualizing topological physics and manipulating bioparticle unconventionally. Here we present topological acoustofluidic chips to illustrate the complex interaction between elastic valley spin and nonlinear fluid dynamics. We created valley streaming vortices and chiral swirling patterns for backward-immune particle transport. Using tracer particles, we observed arrays of clockwise and anticlockwise valley vortices due to an increase in elastic spin density. Moreover, we discovered exotic topological pressure wells in fluids, creating nanoscale trapping fields for manipulating DNA molecules. We also found a 93.2% modulation in the bandwidth of edge states, dependent on the orientation of the substrate’s crystallographic structure. Our study sets the stage for uncovering topological acoustofluidic phenomena and visualizing elastic valley spin, revealing the potential for topological-material applications in life sciences.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.