Anomalous phenomena in explosive percolation of polymer/metal nanocomposite films

IF 4.5 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2025-03-20 DOI:10.1016/j.polymer.2025.128303
Qais M. Al-Bataineh , Ahmad D. Telfah , Ihsan Aljarrah , Ahmad A. Ahmad , Carlos J. Tavares , Johannes Etzkorn , Yves Rosefort
{"title":"Anomalous phenomena in explosive percolation of polymer/metal nanocomposite films","authors":"Qais M. Al-Bataineh ,&nbsp;Ahmad D. Telfah ,&nbsp;Ihsan Aljarrah ,&nbsp;Ahmad A. Ahmad ,&nbsp;Carlos J. Tavares ,&nbsp;Johannes Etzkorn ,&nbsp;Yves Rosefort","doi":"10.1016/j.polymer.2025.128303","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the electrical conductivity of polyethylene oxide (PEO) nanocomposite films with varying aluminum nanoparticle (AlNP) volume fractions. A sharp increase in the electrical conductivity occurs at the percolation threshold, reaching 219 S cm<sup>−1</sup>, followed by a plateau at higher AlNP concentrations, indicating the formation of stable conductive pathways. Upon UV irradiation, the electrical conductivity increases to 1770 S cm<sup>−1</sup>, suggesting the significant influence of localized surface plasmon resonance (LSPR) effects. The conductivity behavior is quantitatively characterized through mathematical modeling, highlighting the volume fraction dependence of the nanocomposite's electrical properties. Scanning electron microscopy and atomic force microscopy demonstrate the distribution and morphology of AlNPs, showing their dispersion at lower concentrations and agglomeration at higher concentrations. Fourier-transform infrared spectroscopy identifies the chemical interactions between PEO and AlNPs, while X-ray diffraction (XRD) demonstrates the AlNP-induced disruption of PEO crystallinity. These insights provide a comprehensive understanding of the nanocomposite's electrical behavior, offering valuable guidance for the design and optimization of materials for electronics and optoelectronics applications.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"325 ","pages":"Article 128303"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386125002897","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the electrical conductivity of polyethylene oxide (PEO) nanocomposite films with varying aluminum nanoparticle (AlNP) volume fractions. A sharp increase in the electrical conductivity occurs at the percolation threshold, reaching 219 S cm−1, followed by a plateau at higher AlNP concentrations, indicating the formation of stable conductive pathways. Upon UV irradiation, the electrical conductivity increases to 1770 S cm−1, suggesting the significant influence of localized surface plasmon resonance (LSPR) effects. The conductivity behavior is quantitatively characterized through mathematical modeling, highlighting the volume fraction dependence of the nanocomposite's electrical properties. Scanning electron microscopy and atomic force microscopy demonstrate the distribution and morphology of AlNPs, showing their dispersion at lower concentrations and agglomeration at higher concentrations. Fourier-transform infrared spectroscopy identifies the chemical interactions between PEO and AlNPs, while X-ray diffraction (XRD) demonstrates the AlNP-induced disruption of PEO crystallinity. These insights provide a comprehensive understanding of the nanocomposite's electrical behavior, offering valuable guidance for the design and optimization of materials for electronics and optoelectronics applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚合物/金属纳米复合膜爆炸渗透中的异常现象
本研究考察了不同铝纳米颗粒(AlNP)体积分数的聚乙烯氧化物(PEO)纳米复合膜的导电性。在渗透阈值处,电导率急剧增加,达到219 S∙cm-1,随后在较高AlNP浓度下出现平台期,表明形成了稳定的导电途径。紫外线照射后,电导率激增至1770 S∙cm-1,表明局部表面等离子体共振(LSPR)效应对其有显著影响。电导率行为通过数学模型定量表征,突出了纳米复合材料电性能的体积分数依赖性。扫描电子显微镜(SEM)和原子力显微镜(AFM)分析了AlNPs的分布和形态,表明AlNPs在低浓度时呈分散性,在高浓度时呈团聚性。傅里叶变换红外光谱(FTIR)证实了PEO和AlNPs之间的化学相互作用,而x射线衍射(XRD)证实了alnp诱导PEO结晶度的破坏。这些见解提供了对纳米复合材料电学行为的全面理解,为电子和光电子应用材料的设计和优化提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Functionalized Ionic Liquid Supported on Expandable Graphite for Achieving Efficient Fire Retardancy and High Thermal Conductivity in Thermoplastic Polyurethane Crystallization Regulation in Living Anionic Polymerization of 1,2-Dihydronaphthalene High-SiO2 Hydrogels with Intrinsic Antifreeze, Superior Strength, and Wear Resistance Polydimethylsiloxane Networks Integrated with Poly(ethylene oxide) Chains: Nanostructures, Reprocessing and Transformation into Solid Polymer Electrolytes Construction of High-Barrier, High-Strength EPDM Composites: Synergistic Optimization of Zinc methacrylate -Induced Covalent-Ionic Dual Network and Hydroxy Terminated Polybutadiene Plasticization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1