Li Ji, Huayong Zhang, Zhongyu Wang, Yonglan Tian, Wang Tian, Zhao Liu
{"title":"Temperature orchestrates phytoplankton community and environment in mountain stream for enhancing resource use efficiency","authors":"Li Ji, Huayong Zhang, Zhongyu Wang, Yonglan Tian, Wang Tian, Zhao Liu","doi":"10.3389/fmars.2025.1565858","DOIUrl":null,"url":null,"abstract":"Warming is a key factor influencing the function of the structure and function of phytoplankton communities. However, the impacts of temperature on phytoplankton resource use efficiency (RUE) in mountain rivers remain poorly understood. Here, the spatiotemporal patterns of phytoplankton community structure (biomass, community composition, and diversity), function (RUE), and the main environmental factors in a high-latitude mountainous stream were investigated to assess how temperature affects the phytoplankton RUE. The results showed that phytoplankton species richness, biomass, and RUE all increased with rising temperature, with species richness significantly higher. There was a shift in the phytoplankton community from dominated by Cyanophyta at lower temperatures to dominated by Cryptophyta at higher temperatures. Phytoplankton RUE was significantly positively correlated to species richness, but no significant relationship was observed between RUE and Pielou’s evenness. Furthermore, redundancy analysis and Mantel tests revealed that water temperature, nutrient (TP, and NH<jats:sub>4</jats:sub><jats:sup>+</jats:sup>-N) and physicochemical variable (flow velocity, and dissolved oxygen) explained 40.40% of the overall variation in phytoplankton RUE. Phytoplankton RUE exhibited stronger responses to environmental variables than phytoplankton biomass or diversity. The results highlighted that temperature directly affected phytoplankton community composition and enhanced RUE by altering environmental conditions and biodiversity. Temperature plays a crucial role in shaping the structure and function of phytoplankton communities in rivers. Our results contribute to the deep understanding of the mechanisms by which temperature influences RUE providing a basis for the sustainable management and conservation of aquatic ecosystems and watersheds.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"56 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1565858","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Warming is a key factor influencing the function of the structure and function of phytoplankton communities. However, the impacts of temperature on phytoplankton resource use efficiency (RUE) in mountain rivers remain poorly understood. Here, the spatiotemporal patterns of phytoplankton community structure (biomass, community composition, and diversity), function (RUE), and the main environmental factors in a high-latitude mountainous stream were investigated to assess how temperature affects the phytoplankton RUE. The results showed that phytoplankton species richness, biomass, and RUE all increased with rising temperature, with species richness significantly higher. There was a shift in the phytoplankton community from dominated by Cyanophyta at lower temperatures to dominated by Cryptophyta at higher temperatures. Phytoplankton RUE was significantly positively correlated to species richness, but no significant relationship was observed between RUE and Pielou’s evenness. Furthermore, redundancy analysis and Mantel tests revealed that water temperature, nutrient (TP, and NH4+-N) and physicochemical variable (flow velocity, and dissolved oxygen) explained 40.40% of the overall variation in phytoplankton RUE. Phytoplankton RUE exhibited stronger responses to environmental variables than phytoplankton biomass or diversity. The results highlighted that temperature directly affected phytoplankton community composition and enhanced RUE by altering environmental conditions and biodiversity. Temperature plays a crucial role in shaping the structure and function of phytoplankton communities in rivers. Our results contribute to the deep understanding of the mechanisms by which temperature influences RUE providing a basis for the sustainable management and conservation of aquatic ecosystems and watersheds.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.