Boosting micropollutants removal over bimetallic Fe-Mo catalyst via peracetic acid activation: Mo doping enhanced generation of reactive oxygen species
Congcong Guo, Chao Yu, Yiran Zhang, Yuyou Li, Jun Wan, Lei Wang, Jingwen Pan
{"title":"Boosting micropollutants removal over bimetallic Fe-Mo catalyst via peracetic acid activation: Mo doping enhanced generation of reactive oxygen species","authors":"Congcong Guo, Chao Yu, Yiran Zhang, Yuyou Li, Jun Wan, Lei Wang, Jingwen Pan","doi":"10.1016/j.jhazmat.2025.138013","DOIUrl":null,"url":null,"abstract":"Herein, a range of bimetallic Fe-Mo catalysts (Fe<sub>x</sub>Mo<sub>y</sub>@C) were successfully synthesized to explore the effect of Mo doping on the activity of Fe-based catalyst (Fe@C) for peracetic acid (PAA) activation. Mo doped during Fe@C preparation process introduced more low-valent metal species into Fe@C with the potential to promote PAA activation and Fe(III)/Fe(II) cycling. Compared to single Fe catalyst, Fe<sub>4</sub>Mo<sub>1</sub>@C exhibited outstanding performance in PAA activation for ultrafast degradation of bisphenol A (BPA), with the degradation rate of 0.88<!-- --> <!-- -->min<sup>-1</sup>, which exceeded most reported heterogeneous catalysts. Mechanism results indicated that the Mo doping promoted the generation of reactive species and accelerated Fe(III)/Fe(II) conversion on the surface of Fe<sub>4</sub>Mo<sub>1</sub>@C to ensure the continuous PAA activation. Further analysis revealed that incorporated Mo not only promoted electron transfer and accelerated transform of Fe(III) to Fe(II), but also lowered the energy barrier for PAA activation. Moreover, the toxicity of BPA and its intermediates could be effectively reduced in Fe<sub>4</sub>Mo<sub>1</sub>@C/PAA system, guaranteeing the safety of treatment process. This study clarified the mechanism of Mo doping to enhance the Fe-based catalysts activity for organic micropollutant degradation, and the new insights obtained would further promote the application of bimetallic catalysts in PAA-based advanced oxidation processes.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"140 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138013","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, a range of bimetallic Fe-Mo catalysts (FexMoy@C) were successfully synthesized to explore the effect of Mo doping on the activity of Fe-based catalyst (Fe@C) for peracetic acid (PAA) activation. Mo doped during Fe@C preparation process introduced more low-valent metal species into Fe@C with the potential to promote PAA activation and Fe(III)/Fe(II) cycling. Compared to single Fe catalyst, Fe4Mo1@C exhibited outstanding performance in PAA activation for ultrafast degradation of bisphenol A (BPA), with the degradation rate of 0.88 min-1, which exceeded most reported heterogeneous catalysts. Mechanism results indicated that the Mo doping promoted the generation of reactive species and accelerated Fe(III)/Fe(II) conversion on the surface of Fe4Mo1@C to ensure the continuous PAA activation. Further analysis revealed that incorporated Mo not only promoted electron transfer and accelerated transform of Fe(III) to Fe(II), but also lowered the energy barrier for PAA activation. Moreover, the toxicity of BPA and its intermediates could be effectively reduced in Fe4Mo1@C/PAA system, guaranteeing the safety of treatment process. This study clarified the mechanism of Mo doping to enhance the Fe-based catalysts activity for organic micropollutant degradation, and the new insights obtained would further promote the application of bimetallic catalysts in PAA-based advanced oxidation processes.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.