G. Di Gennaro, M. Brüggen, E. Moravec, L. Di Mascolo, R. J. van Weeren, G. Brunetti, R. Cassano, A. Botteon, E. Churazov, I. Khabibullin, N. Lyskova, F. de Gasperin, M. J. Hardcastle, H. J. A. Röttgering, T. Shimwell, R. Sunyaev, A. Stanford
{"title":"Limits and challenges of the detection of cluster-scale diffuse radio emission at high redshift","authors":"G. Di Gennaro, M. Brüggen, E. Moravec, L. Di Mascolo, R. J. van Weeren, G. Brunetti, R. Cassano, A. Botteon, E. Churazov, I. Khabibullin, N. Lyskova, F. de Gasperin, M. J. Hardcastle, H. J. A. Röttgering, T. Shimwell, R. Sunyaev, A. Stanford","doi":"10.1051/0004-6361/202453203","DOIUrl":null,"url":null,"abstract":"Diffuse radio emission in galaxy clusters is a tracer of ultra-relativistic particles and <i>μ<i/>G-level magnetic fields, and is thought to be triggered by cluster merger events. In the distant Universe (i.e. <i>z<i/> > 0.6), such sources have been observed only in a handful of systems, and their study is important to understand the evolution of large-scale magnetic fields over the cosmic time. Previous studies of nine <i>Planck<i/> clusters up to <i>z<i/> ∼ 0.9 suggest a fast amplification of cluster-scale magnetic fields, at least up to half of the current Universe’s age, and steep spectrum cluster scale emission, in line with particle re-acceleration due to turbulence. In this paper, we investigate the presence of diffuse radio emission in a larger sample of galaxy clusters reaching even higher redshifts (i.e. <i>z<i/> ≳ 1). We selected clusters from the Massive and Distant Clusters of <i>WISE<i/> Survey (MaDCoWS) with richness <i>λ<i/><sub>15<sub/> > 40 covering the area of the second data release of the LOFAR Two-Meter Sky Survey (LoTSS-DR2) at 144 MHz. These selected clusters are in the redshift range 0.78 − 1.53 (with a median value of 1.05). We detect the possible presence of diffuse radio emission, with the largest linear sizes of 350 − 500 kpc, in five out of the 56 clusters in our sample. If this diffuse radio emission is due to a radio halo, these radio sources lie on or above the scatter of the <i>P<i/><sub><i>ν<i/><sub/> − <i>M<i/><sub>500<sub/> radio halo correlations (at 150 MHz and 1.4 GHz) found at <i>z<i/> < 0.6, depending on the mass assumed. We also find that these radio sources are at the limit of the detection by LoTSS, and therefore deeper observations are important for future studies.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"93 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202453203","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Diffuse radio emission in galaxy clusters is a tracer of ultra-relativistic particles and μG-level magnetic fields, and is thought to be triggered by cluster merger events. In the distant Universe (i.e. z > 0.6), such sources have been observed only in a handful of systems, and their study is important to understand the evolution of large-scale magnetic fields over the cosmic time. Previous studies of nine Planck clusters up to z ∼ 0.9 suggest a fast amplification of cluster-scale magnetic fields, at least up to half of the current Universe’s age, and steep spectrum cluster scale emission, in line with particle re-acceleration due to turbulence. In this paper, we investigate the presence of diffuse radio emission in a larger sample of galaxy clusters reaching even higher redshifts (i.e. z ≳ 1). We selected clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS) with richness λ15 > 40 covering the area of the second data release of the LOFAR Two-Meter Sky Survey (LoTSS-DR2) at 144 MHz. These selected clusters are in the redshift range 0.78 − 1.53 (with a median value of 1.05). We detect the possible presence of diffuse radio emission, with the largest linear sizes of 350 − 500 kpc, in five out of the 56 clusters in our sample. If this diffuse radio emission is due to a radio halo, these radio sources lie on or above the scatter of the Pν − M500 radio halo correlations (at 150 MHz and 1.4 GHz) found at z < 0.6, depending on the mass assumed. We also find that these radio sources are at the limit of the detection by LoTSS, and therefore deeper observations are important for future studies.
期刊介绍:
Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.