Variable and intelligent catalyst design based on local chemical environments in sulfur redox reactions

IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2025-05-21 DOI:10.1016/j.joule.2025.101878
Yeyang Jia , Zhilong Wang , Zhiyuan Han , Junfeng Li , Mengtian Zhang , Zhoujie Lao , Yanqiang Han , Runhua Gao , Jing Gao , Zhiyang Zheng , An Chen , Hong Li , Rui Mao , Kehao Tao , Jinjin Li , Guangmin Zhou
{"title":"Variable and intelligent catalyst design based on local chemical environments in sulfur redox reactions","authors":"Yeyang Jia ,&nbsp;Zhilong Wang ,&nbsp;Zhiyuan Han ,&nbsp;Junfeng Li ,&nbsp;Mengtian Zhang ,&nbsp;Zhoujie Lao ,&nbsp;Yanqiang Han ,&nbsp;Runhua Gao ,&nbsp;Jing Gao ,&nbsp;Zhiyang Zheng ,&nbsp;An Chen ,&nbsp;Hong Li ,&nbsp;Rui Mao ,&nbsp;Kehao Tao ,&nbsp;Jinjin Li ,&nbsp;Guangmin Zhou","doi":"10.1016/j.joule.2025.101878","DOIUrl":null,"url":null,"abstract":"<div><div>The conventional constant catalyst design approach demonstrates limited adaptability to external conditions, impairing the catalytic performance in practical lithium-sulfur (Li-S) batteries. Here, we propose a variable and intelligent catalyst design strategy based on catalysts’ local chemical environments (LCEs). The competing adsorption between polysulfides and solvents within LCEs governs the interfacial reactions, regulated by the interaction between extrinsic electrolyte effects and intrinsic catalyst structures. Using nickel sulfides as a model system, interpretable machine-learning methods provide intelligent insights into structural tuning. Reversed catalytic efficiency is observed in LCEs of diluted and concentrated polysulfides, and variable catalyst modification guidance is presented for accelerating electron and ion transfer rates, respectively. Li-S batteries based on a Ni<sub>3</sub>S<sub>2</sub> catalyst manifest exceptional performance in a lean electrolyte, achieving an energy density of 433 Wh kg<sup>−1</sup> in pouch cells. This investigation provides a thorough design protocol for catalysts and promotes practical applications of Li-S batteries through catalytic conversion.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 5","pages":"Article 101878"},"PeriodicalIF":35.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435125000595","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The conventional constant catalyst design approach demonstrates limited adaptability to external conditions, impairing the catalytic performance in practical lithium-sulfur (Li-S) batteries. Here, we propose a variable and intelligent catalyst design strategy based on catalysts’ local chemical environments (LCEs). The competing adsorption between polysulfides and solvents within LCEs governs the interfacial reactions, regulated by the interaction between extrinsic electrolyte effects and intrinsic catalyst structures. Using nickel sulfides as a model system, interpretable machine-learning methods provide intelligent insights into structural tuning. Reversed catalytic efficiency is observed in LCEs of diluted and concentrated polysulfides, and variable catalyst modification guidance is presented for accelerating electron and ion transfer rates, respectively. Li-S batteries based on a Ni3S2 catalyst manifest exceptional performance in a lean electrolyte, achieving an energy density of 433 Wh kg−1 in pouch cells. This investigation provides a thorough design protocol for catalysts and promotes practical applications of Li-S batteries through catalytic conversion.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于硫氧化还原反应局部化学环境的可变智能催化剂设计
传统的恒定催化剂设计方法对外部条件的适应性有限,影响了实际锂硫电池的催化性能。在此,我们提出了一种基于催化剂局部化学环境(LCEs)的可变智能催化剂设计策略。多硫化物和溶剂在LCEs内的竞争吸附控制了界面反应,由外在电解质效应和内在催化剂结构之间的相互作用调节。使用硫化镍作为模型系统,可解释的机器学习方法为结构调整提供了智能见解。在稀释和浓缩的多硫化物的lce中观察到反催化效率,并提出了不同的催化剂改性指导,分别加速电子和离子的转移速率。基于Ni3S2催化剂的Li-S电池在稀薄的电解液中表现出优异的性能,在袋式电池中实现了433 Wh kg−1的能量密度。本研究为催化剂的设计提供了一个完整的方案,并通过催化转化促进锂硫电池的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
What can we learn from US national transmission studies? Microenvironment engineering within diffusion layer in electrocatalysis Electrolyte engineering for hydrogen energy Microstructure-tailored Ni-rich cathode with fast Li+ diffusion layer boosts high-rate and long-cycling all-solid-state batteries Full-cycle oxygen-tolerant organic flow batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1