{"title":"Genetic properties underlying transcriptional variability across different perturbations","authors":"Saburo Tsuru, Chikara Furusawa","doi":"10.1038/s41467-025-57642-8","DOIUrl":null,"url":null,"abstract":"<p>The rate and direction of phenotypic evolution depend on the availability of phenotypic variants induced genetically or environmentally. It is widely accepted that organisms do not display uniform phenotypic variation, with certain variants arising more frequently than others in response to genetic or environmental perturbations. Previous studies have suggested that gene regulatory networks channel both environmental and genetic influences. However, how the gene regulatory networks influence phenotypic variation remains unclear. To address this, we characterize transcriptional variations in <i>Escherichia coli</i> under environmental and genetic perturbations. Based on the current understanding of transcriptional regulatory networks, we identify genetic properties that explain gene-to-gene differences in transcriptional variation. Our findings highlight the role of gene regulatory networks in shaping the shared phenotypic variability across different perturbations.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"10 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57642-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The rate and direction of phenotypic evolution depend on the availability of phenotypic variants induced genetically or environmentally. It is widely accepted that organisms do not display uniform phenotypic variation, with certain variants arising more frequently than others in response to genetic or environmental perturbations. Previous studies have suggested that gene regulatory networks channel both environmental and genetic influences. However, how the gene regulatory networks influence phenotypic variation remains unclear. To address this, we characterize transcriptional variations in Escherichia coli under environmental and genetic perturbations. Based on the current understanding of transcriptional regulatory networks, we identify genetic properties that explain gene-to-gene differences in transcriptional variation. Our findings highlight the role of gene regulatory networks in shaping the shared phenotypic variability across different perturbations.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.