Sensitivity analysis of drag coefficient and length scale of wind influence on tropical cyclone intensity change using net energy gain rate

IF 2.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Frontiers in Marine Science Pub Date : 2025-03-20 DOI:10.3389/fmars.2025.1536014
Sunghun Kim, Woojeong Lee, Seonghee Won, Hyoun-Woo Kang, Kyeong Ok Kim, Sok Kuh Kang
{"title":"Sensitivity analysis of drag coefficient and length scale of wind influence on tropical cyclone intensity change using net energy gain rate","authors":"Sunghun Kim, Woojeong Lee, Seonghee Won, Hyoun-Woo Kang, Kyeong Ok Kim, Sok Kuh Kang","doi":"10.3389/fmars.2025.1536014","DOIUrl":null,"url":null,"abstract":"Predicting tropical cyclones (TC) rapid intensification (RI) is one of the most significant challenges. This study refines the Net Energy Gain Rate (NGR) metric to improve TC intensity predictions, focusing on uncertainties in the drag coefficient (<jats:italic>C<jats:sub>d</jats:sub></jats:italic>​) at extreme wind speeds and the effective length scale of TC-induced momentum transfer to the ocean (<jats:italic>R<jats:sub>w</jats:sub></jats:italic>). Using data from the western North Pacific basin (2004–2021), we conducted sensitivity analyses with four <jats:italic>C<jats:sub>d</jats:sub></jats:italic> parameterizations (increasing, decreasing, constant, and control) and varied <jats:italic>R<jats:sub>w</jats:sub>​</jats:italic> from 0.5 to 4 times the radius of maximum wind (<jats:italic>R<jats:sub>max</jats:sub></jats:italic>​). Results indicate that <jats:italic>R<jats:sub>w</jats:sub></jats:italic>​=1<jats:italic>R<jats:sub>max</jats:sub></jats:italic>​ consistently yields the highest correlation coefficient between NGR and intensity change in 24-hour among all combinations, especially for strong TCs (Category 3 or higher). Among the <jats:italic>C<jats:sub>d</jats:sub></jats:italic> parameterizations, the scenario where <jats:italic>C<jats:sub>d</jats:sub></jats:italic> decreases at wind speeds exceeding 50 m s<jats:sup>-1</jats:sup> showed superior performance in capturing intensity changes. Multi-linear regression models incorporating NGR, prior 12-hour intensity changes, and vertical wind shear confirmed that decreasing <jats:italic>C<jats:sub>d</jats:sub></jats:italic> at <jats:italic>R<jats:sub>w</jats:sub></jats:italic>=1<jats:italic>R<jats:sub>max</jats:sub></jats:italic>​ provides the most reliable predictions, achieving the highest prediction performance in the TC intensity change in 24-hour. These findings underscore the importance of accurately representing <jats:italic>C<jats:sub>d</jats:sub>​</jats:italic> behavior under extreme wind conditions and precisely defining <jats:italic>R<jats:sub>w</jats:sub></jats:italic>​ to enhance the predictive skill of NGR-based TC intensity forecasts.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"183 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1536014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting tropical cyclones (TC) rapid intensification (RI) is one of the most significant challenges. This study refines the Net Energy Gain Rate (NGR) metric to improve TC intensity predictions, focusing on uncertainties in the drag coefficient (Cd​) at extreme wind speeds and the effective length scale of TC-induced momentum transfer to the ocean (Rw). Using data from the western North Pacific basin (2004–2021), we conducted sensitivity analyses with four Cd parameterizations (increasing, decreasing, constant, and control) and varied Rw from 0.5 to 4 times the radius of maximum wind (Rmax​). Results indicate that Rw​=1Rmax​ consistently yields the highest correlation coefficient between NGR and intensity change in 24-hour among all combinations, especially for strong TCs (Category 3 or higher). Among the Cd parameterizations, the scenario where Cd decreases at wind speeds exceeding 50 m s-1 showed superior performance in capturing intensity changes. Multi-linear regression models incorporating NGR, prior 12-hour intensity changes, and vertical wind shear confirmed that decreasing Cd at Rw=1Rmax​ provides the most reliable predictions, achieving the highest prediction performance in the TC intensity change in 24-hour. These findings underscore the importance of accurately representing Cd behavior under extreme wind conditions and precisely defining Rw​ to enhance the predictive skill of NGR-based TC intensity forecasts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Marine Science
Frontiers in Marine Science Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.10
自引率
16.20%
发文量
2443
审稿时长
14 weeks
期刊介绍: Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide. With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.
期刊最新文献
Reassessing the HMS Challenger collection as a late 19th century surface ocean indicator using X-ray micro-computed tomography Variations in the archaeal community in wetlands soils under various hydrologic conditions in the Yellow River Estuary Automatic deep learning-based pipeline for Mediterranean fish segmentation Stay or go? Space and resource use of the great hammerhead (Sphyrna mokarran) off Andros Island, The Bahamas The dissection of genotype × tissue interactions in mud crab Scylla paramamosain indicates the sexual differences in parental selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1