{"title":"Excellence in Industrial Organic Synthesis 2024","authors":"Bernd Schaefer, Shashank Shekhar, James Murray","doi":"10.1021/acs.oprd.5c00049","DOIUrl":null,"url":null,"abstract":"Published as part of <i>Organic Process Research & Development</i> special issue “Excellence in Industrial Organic Synthesis 2024”. In the chemical industry, alongside the discovery of new substances and their properties, the development and optimization of chemical reactions and processes play a decisive role, not least for economic reasons. (1,2) This is nothing new. The interplay between research and development, and thus the pursuit of excellence in chemistry, has characterized the industry from the very beginning and will certainly continue to make a decisive contribution in the future, mastering the major challenges we are currently facing, from the demand for increased sustainability and efficient CO<sub>2</sub> management to the changes in the supply of raw materials and energy. The conceptual foundations of excellence in chemistry can be traced back to the principle of parsimony by William of Ockham (1286–1347), a medieval Franciscan monk, and on his proverbial razor, in which he summed up the motivation of optimization in a single sentence: “It is futile to do with more what can be done with fewer” (Lat.: “<i>Frustra fit per plura, quod potest fieri per pauciora</i>”). (3,4) In accordance with this concept, James B. Hendrickson (1928–2018) outlined his ideas on the logic of organic chemistry and <i>ideal synthesis</i> already in 1975. (5,6) Barry Trost’s thoughts on <i>atom economy</i> followed in the early 1990s, while Paul A. Wender came up with function-oriented synthesis and <i>step economy</i> in 2008 (7) and Phil Baran and Reinhard Hoffmann with <i>redox economy</i> at almost the same time. (8) In parallel, Roger A. Sheldon emphasized the need for a new paradigm in the evaluation of efficiency in chemical production, assigning value not only to chemical yield but also to waste minimization. By developing the E-factor concept, which is now used throughout the industry in one form or another, he brought <i>elegance and precision</i> to large-scale production. (9−11) In this respect, it is perhaps not too surprising that some of these elegant processes have already been in operation for a while. As examples one may consider Evonik’s methionine production, BASF’s citral synthesis, and Rhodia’s vanillin process. (12) Taking James Hendrickson’s thoughts on the <i>ideal synthesis</i> as a starting point, this year we can indeed celebrate 50 years of excellence in industrial organic synthesis. Articles included in this Special Issue cover a wide variety of research topics such as discussion on strategies for kilogram-scale synthesis with emphasis on safety, robustness, and sustainability, flow and impinging-jet technologies, new catalytic methods, integration of Process Analytical Technologies (PAT) for solid-phase peptide synthesis, and green chemistry to name a few. These outstanding contributions provide an exquisite overview of the current state of the art and certainly pave the way for further improvements. Consistent with earlier issues in this series (2019 (13) and 2021 (14)), articles were received from both academic and industrial researchers, highlighting the value of collaboration between these groups to solve industry-relevant synthetic problems. We sincerely thank all the authors who have contributed to this Special Issue. Happy reading! This article references 14 other publications. This article has not yet been cited by other publications.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"34 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.5c00049","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Published as part of Organic Process Research & Development special issue “Excellence in Industrial Organic Synthesis 2024”. In the chemical industry, alongside the discovery of new substances and their properties, the development and optimization of chemical reactions and processes play a decisive role, not least for economic reasons. (1,2) This is nothing new. The interplay between research and development, and thus the pursuit of excellence in chemistry, has characterized the industry from the very beginning and will certainly continue to make a decisive contribution in the future, mastering the major challenges we are currently facing, from the demand for increased sustainability and efficient CO2 management to the changes in the supply of raw materials and energy. The conceptual foundations of excellence in chemistry can be traced back to the principle of parsimony by William of Ockham (1286–1347), a medieval Franciscan monk, and on his proverbial razor, in which he summed up the motivation of optimization in a single sentence: “It is futile to do with more what can be done with fewer” (Lat.: “Frustra fit per plura, quod potest fieri per pauciora”). (3,4) In accordance with this concept, James B. Hendrickson (1928–2018) outlined his ideas on the logic of organic chemistry and ideal synthesis already in 1975. (5,6) Barry Trost’s thoughts on atom economy followed in the early 1990s, while Paul A. Wender came up with function-oriented synthesis and step economy in 2008 (7) and Phil Baran and Reinhard Hoffmann with redox economy at almost the same time. (8) In parallel, Roger A. Sheldon emphasized the need for a new paradigm in the evaluation of efficiency in chemical production, assigning value not only to chemical yield but also to waste minimization. By developing the E-factor concept, which is now used throughout the industry in one form or another, he brought elegance and precision to large-scale production. (9−11) In this respect, it is perhaps not too surprising that some of these elegant processes have already been in operation for a while. As examples one may consider Evonik’s methionine production, BASF’s citral synthesis, and Rhodia’s vanillin process. (12) Taking James Hendrickson’s thoughts on the ideal synthesis as a starting point, this year we can indeed celebrate 50 years of excellence in industrial organic synthesis. Articles included in this Special Issue cover a wide variety of research topics such as discussion on strategies for kilogram-scale synthesis with emphasis on safety, robustness, and sustainability, flow and impinging-jet technologies, new catalytic methods, integration of Process Analytical Technologies (PAT) for solid-phase peptide synthesis, and green chemistry to name a few. These outstanding contributions provide an exquisite overview of the current state of the art and certainly pave the way for further improvements. Consistent with earlier issues in this series (2019 (13) and 2021 (14)), articles were received from both academic and industrial researchers, highlighting the value of collaboration between these groups to solve industry-relevant synthetic problems. We sincerely thank all the authors who have contributed to this Special Issue. Happy reading! This article references 14 other publications. This article has not yet been cited by other publications.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.