Excellence in Industrial Organic Synthesis 2024

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Organic Process Research & Development Pub Date : 2025-03-21 DOI:10.1021/acs.oprd.5c00049
Bernd Schaefer, Shashank Shekhar, James Murray
{"title":"Excellence in Industrial Organic Synthesis 2024","authors":"Bernd Schaefer, Shashank Shekhar, James Murray","doi":"10.1021/acs.oprd.5c00049","DOIUrl":null,"url":null,"abstract":"Published as part of <i>Organic Process Research &amp; Development</i> special issue “Excellence in Industrial Organic Synthesis 2024”. In the chemical industry, alongside the discovery of new substances and their properties, the development and optimization of chemical reactions and processes play a decisive role, not least for economic reasons. (1,2) This is nothing new. The interplay between research and development, and thus the pursuit of excellence in chemistry, has characterized the industry from the very beginning and will certainly continue to make a decisive contribution in the future, mastering the major challenges we are currently facing, from the demand for increased sustainability and efficient CO<sub>2</sub> management to the changes in the supply of raw materials and energy. The conceptual foundations of excellence in chemistry can be traced back to the principle of parsimony by William of Ockham (1286–1347), a medieval Franciscan monk, and on his proverbial razor, in which he summed up the motivation of optimization in a single sentence: “It is futile to do with more what can be done with fewer” (Lat.: “<i>Frustra fit per plura, quod potest fieri per pauciora</i>”). (3,4) In accordance with this concept, James B. Hendrickson (1928–2018) outlined his ideas on the logic of organic chemistry and <i>ideal synthesis</i> already in 1975. (5,6) Barry Trost’s thoughts on <i>atom economy</i> followed in the early 1990s, while Paul A. Wender came up with function-oriented synthesis and <i>step economy</i> in 2008 (7) and Phil Baran and Reinhard Hoffmann with <i>redox economy</i> at almost the same time. (8) In parallel, Roger A. Sheldon emphasized the need for a new paradigm in the evaluation of efficiency in chemical production, assigning value not only to chemical yield but also to waste minimization. By developing the E-factor concept, which is now used throughout the industry in one form or another, he brought <i>elegance and precision</i> to large-scale production. (9−11) In this respect, it is perhaps not too surprising that some of these elegant processes have already been in operation for a while. As examples one may consider Evonik’s methionine production, BASF’s citral synthesis, and Rhodia’s vanillin process. (12) Taking James Hendrickson’s thoughts on the <i>ideal synthesis</i> as a starting point, this year we can indeed celebrate 50 years of excellence in industrial organic synthesis. Articles included in this Special Issue cover a wide variety of research topics such as discussion on strategies for kilogram-scale synthesis with emphasis on safety, robustness, and sustainability, flow and impinging-jet technologies, new catalytic methods, integration of Process Analytical Technologies (PAT) for solid-phase peptide synthesis, and green chemistry to name a few. These outstanding contributions provide an exquisite overview of the current state of the art and certainly pave the way for further improvements. Consistent with earlier issues in this series (2019 (13) and 2021 (14)), articles were received from both academic and industrial researchers, highlighting the value of collaboration between these groups to solve industry-relevant synthetic problems. We sincerely thank all the authors who have contributed to this Special Issue. Happy reading! This article references 14 other publications. This article has not yet been cited by other publications.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"34 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.5c00049","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Published as part of Organic Process Research & Development special issue “Excellence in Industrial Organic Synthesis 2024”. In the chemical industry, alongside the discovery of new substances and their properties, the development and optimization of chemical reactions and processes play a decisive role, not least for economic reasons. (1,2) This is nothing new. The interplay between research and development, and thus the pursuit of excellence in chemistry, has characterized the industry from the very beginning and will certainly continue to make a decisive contribution in the future, mastering the major challenges we are currently facing, from the demand for increased sustainability and efficient CO2 management to the changes in the supply of raw materials and energy. The conceptual foundations of excellence in chemistry can be traced back to the principle of parsimony by William of Ockham (1286–1347), a medieval Franciscan monk, and on his proverbial razor, in which he summed up the motivation of optimization in a single sentence: “It is futile to do with more what can be done with fewer” (Lat.: “Frustra fit per plura, quod potest fieri per pauciora”). (3,4) In accordance with this concept, James B. Hendrickson (1928–2018) outlined his ideas on the logic of organic chemistry and ideal synthesis already in 1975. (5,6) Barry Trost’s thoughts on atom economy followed in the early 1990s, while Paul A. Wender came up with function-oriented synthesis and step economy in 2008 (7) and Phil Baran and Reinhard Hoffmann with redox economy at almost the same time. (8) In parallel, Roger A. Sheldon emphasized the need for a new paradigm in the evaluation of efficiency in chemical production, assigning value not only to chemical yield but also to waste minimization. By developing the E-factor concept, which is now used throughout the industry in one form or another, he brought elegance and precision to large-scale production. (9−11) In this respect, it is perhaps not too surprising that some of these elegant processes have already been in operation for a while. As examples one may consider Evonik’s methionine production, BASF’s citral synthesis, and Rhodia’s vanillin process. (12) Taking James Hendrickson’s thoughts on the ideal synthesis as a starting point, this year we can indeed celebrate 50 years of excellence in industrial organic synthesis. Articles included in this Special Issue cover a wide variety of research topics such as discussion on strategies for kilogram-scale synthesis with emphasis on safety, robustness, and sustainability, flow and impinging-jet technologies, new catalytic methods, integration of Process Analytical Technologies (PAT) for solid-phase peptide synthesis, and green chemistry to name a few. These outstanding contributions provide an exquisite overview of the current state of the art and certainly pave the way for further improvements. Consistent with earlier issues in this series (2019 (13) and 2021 (14)), articles were received from both academic and industrial researchers, highlighting the value of collaboration between these groups to solve industry-relevant synthetic problems. We sincerely thank all the authors who have contributed to this Special Issue. Happy reading! This article references 14 other publications. This article has not yet been cited by other publications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
期刊最新文献
Issue Editorial Masthead Issue Publication Information On Scalability, Synthetic Efficiency, and Convergency Industrial Case Studies Demonstrating Applicability of ICH M7 Control Options 3 and 4 for Nitrosamine Control Excellence in Industrial Organic Synthesis 2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1