Yawen Tong, Ning Yan, Chenghao Ye, Heng Liang, Ting Zeng, Jinzhe Zhang, Juntao Dai, Xiang-kui Gu
{"title":"Design the transition metal dichalcogenides supported single-atom catalysts for electroreduction of nitrate to ammonia","authors":"Yawen Tong, Ning Yan, Chenghao Ye, Heng Liang, Ting Zeng, Jinzhe Zhang, Juntao Dai, Xiang-kui Gu","doi":"10.1016/j.ces.2025.121573","DOIUrl":null,"url":null,"abstract":"The development of electrocatalysts for nitrate reduction (NO<sub>3</sub>RR) is crucial for sustainable ammonia production and environmental protection. This study theoretically screened transition metal dichalcogenides doped with single-atom transition metals to explore their NO<sub>3</sub>RR activity, aiming to reveal the underlying factors affecting the NO<sub>3</sub>RR performance. We identify *NO<sub>3</sub> adsorption energy (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">&#x394;</mi><msub is=\"true\"><mi is=\"true\">E</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">N</mi><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mn is=\"true\">3</mn></msub></msub></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -796.9 3074.1 1146.6\" width=\"7.14ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g><g is=\"true\" transform=\"translate(833,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-45\"></use></g><g is=\"true\" transform=\"translate(738,-155)\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4E\"></use></g><g is=\"true\" transform=\"translate(530,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4F\"></use></g></g><g is=\"true\" transform=\"translate(1081,-107)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Δ</mi><msub is=\"true\"><mi is=\"true\">E</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">N</mi><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mn is=\"true\">3</mn></msub></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Δ</mi><msub is=\"true\"><mi is=\"true\">E</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">N</mi><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mn is=\"true\">3</mn></msub></msub></mrow></math></script></span>) as a key descriptor for NO<sub>3</sub>RR activity and introduce <em>φ</em>, a descriptor combining metal d-electron number and electronegativity, for performance prediction. In-depth analysis revealed that NO<sub>3</sub> activation depends on the interaction between the metal’s <em>d</em><sub>xz</sub>/<em>d</em><sub>yz</sub> orbitals and the pz orbitals of the oxygen atoms in <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">N</mi><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mo is=\"true\">-</mo></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -945.9 2179.5 1295.7\" width=\"5.062ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4E\"></use></g><g is=\"true\" transform=\"translate(750,0)\"><use xlink:href=\"#MJMAIN-4F\"></use></g></g><g is=\"true\" transform=\"translate(1529,432)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(1529,-277)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">N</mi><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mo is=\"true\">-</mo></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">N</mi><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mrow is=\"true\"><mn is=\"true\">3</mn></mrow><mo is=\"true\">-</mo></msubsup></math></script></span>, with <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">&#x394;</mi><msub is=\"true\"><mi is=\"true\">E</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">N</mi><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mn is=\"true\">3</mn></msub></msub></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -796.9 3074.1 1146.6\" width=\"7.14ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g><g is=\"true\" transform=\"translate(833,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-45\"></use></g><g is=\"true\" transform=\"translate(738,-155)\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4E\"></use></g><g is=\"true\" transform=\"translate(530,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4F\"></use></g></g><g is=\"true\" transform=\"translate(1081,-107)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Δ</mi><msub is=\"true\"><mi is=\"true\">E</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">N</mi><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mn is=\"true\">3</mn></msub></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Δ</mi><msub is=\"true\"><mi is=\"true\">E</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">N</mi><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mn is=\"true\">3</mn></msub></msub></mrow></math></script></span> influencing the activity. Simultaneously, the descriptor <em>φ</em> captures the key factors governing <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">&#x394;</mi><msub is=\"true\"><mi is=\"true\">E</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">N</mi><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mn is=\"true\">3</mn></msub></msub></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -796.9 3074.1 1146.6\" width=\"7.14ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g><g is=\"true\" transform=\"translate(833,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-45\"></use></g><g is=\"true\" transform=\"translate(738,-155)\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4E\"></use></g><g is=\"true\" transform=\"translate(530,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4F\"></use></g></g><g is=\"true\" transform=\"translate(1081,-107)\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Δ</mi><msub is=\"true\"><mi is=\"true\">E</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">N</mi><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mn is=\"true\">3</mn></msub></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Δ</mi><msub is=\"true\"><mi is=\"true\">E</mi><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">N</mi><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mn is=\"true\">3</mn></msub></msub></mrow></math></script></span>. Based on these descriptors, Ni/WS<sub>2</sub> was identified as a promising candidate, showing high activity, selectivity, and stability for NO<sub>3</sub>RR. This work provides valuable insights into the underlying factors driving NO<sub>3</sub>RR activity, guiding the design of more efficient electrocatalysts.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"34 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2025.121573","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of electrocatalysts for nitrate reduction (NO3RR) is crucial for sustainable ammonia production and environmental protection. This study theoretically screened transition metal dichalcogenides doped with single-atom transition metals to explore their NO3RR activity, aiming to reveal the underlying factors affecting the NO3RR performance. We identify *NO3 adsorption energy () as a key descriptor for NO3RR activity and introduce φ, a descriptor combining metal d-electron number and electronegativity, for performance prediction. In-depth analysis revealed that NO3 activation depends on the interaction between the metal’s dxz/dyz orbitals and the pz orbitals of the oxygen atoms in , with influencing the activity. Simultaneously, the descriptor φ captures the key factors governing . Based on these descriptors, Ni/WS2 was identified as a promising candidate, showing high activity, selectivity, and stability for NO3RR. This work provides valuable insights into the underlying factors driving NO3RR activity, guiding the design of more efficient electrocatalysts.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.