Telomere-to-telomere genome assembly reveals insights into the adaptive evolution of herbivore-defense mediated by volatile terpenoids in Oenanthe javanica
Kai Feng, Jia-Lu Liu, Nan Sun, Zi-Qi Zhou, Zhi-Yuan Yang, Hui Lv, Cheng Yao, Jin-Ping Zou, Shu-Ping Zhao, Peng Wu, Liang-Jun Li
{"title":"Telomere-to-telomere genome assembly reveals insights into the adaptive evolution of herbivore-defense mediated by volatile terpenoids in Oenanthe javanica","authors":"Kai Feng, Jia-Lu Liu, Nan Sun, Zi-Qi Zhou, Zhi-Yuan Yang, Hui Lv, Cheng Yao, Jin-Ping Zou, Shu-Ping Zhao, Peng Wu, Liang-Jun Li","doi":"10.1111/pbi.70062","DOIUrl":null,"url":null,"abstract":"Releasing large quantities of volatiles is a defense strategy used by plants to resist herbivore attack. <i>Oenanthe javanica</i>, a perennial herb of the Apiaceae family, has a distinctive aroma due to volatile terpenoid accumulation. At present, the complete genome and genetic characteristics of volatile terpenoids in <i>O. javanica</i> remain largely unclear. Here, the telomere-to-telomere genome of <i>O. javanica</i>, with a size of 1012.13 Mb and a contig N50 of 49.55 Mb, was established by combining multiple sequencing technologies. Comparative genome analysis revealed that <i>O. javanica</i> experienced a recent species-specific whole-genome duplication event during the evolutionary process. Numerous gene family expansions were significantly enriched in the terpenoid biosynthesis process, monoterpenoid, and diterpenoid biosynthesis pathways, which resulted in abundant volatile substance accumulation in <i>O. javanica.</i> The volatile terpenoids of <i>O. javanica</i> showed repellent effects on herbivores. Terpenoid biosynthesis was activated by wounding signals under exogenous stimuli. The TPS gene family was significantly expanded in <i>O. javanica</i> compared to those in other species, and the members (<i>OjTPS1</i>, <i>OjTPS3</i>, <i>OjTPS4</i>, <i>OjTPS5</i>, <i>OjTPS7</i>, <i>OjTPS16</i>, <i>OjTPS18</i>, <i>OjTPS30</i> and <i>OjTPS58</i>) responsible for different terpenoid biosynthesis were functionally characterized. These results reveal the genome evolution and molecular characteristics of volatile terpenoids in the process of plant–herbivore interactions. This study also provides genomic resources for genetic and molecular biology research on <i>O. javanica</i> and other plants.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"3 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70062","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Releasing large quantities of volatiles is a defense strategy used by plants to resist herbivore attack. Oenanthe javanica, a perennial herb of the Apiaceae family, has a distinctive aroma due to volatile terpenoid accumulation. At present, the complete genome and genetic characteristics of volatile terpenoids in O. javanica remain largely unclear. Here, the telomere-to-telomere genome of O. javanica, with a size of 1012.13 Mb and a contig N50 of 49.55 Mb, was established by combining multiple sequencing technologies. Comparative genome analysis revealed that O. javanica experienced a recent species-specific whole-genome duplication event during the evolutionary process. Numerous gene family expansions were significantly enriched in the terpenoid biosynthesis process, monoterpenoid, and diterpenoid biosynthesis pathways, which resulted in abundant volatile substance accumulation in O. javanica. The volatile terpenoids of O. javanica showed repellent effects on herbivores. Terpenoid biosynthesis was activated by wounding signals under exogenous stimuli. The TPS gene family was significantly expanded in O. javanica compared to those in other species, and the members (OjTPS1, OjTPS3, OjTPS4, OjTPS5, OjTPS7, OjTPS16, OjTPS18, OjTPS30 and OjTPS58) responsible for different terpenoid biosynthesis were functionally characterized. These results reveal the genome evolution and molecular characteristics of volatile terpenoids in the process of plant–herbivore interactions. This study also provides genomic resources for genetic and molecular biology research on O. javanica and other plants.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.