Tiancheng Xu, Yongmei Li, Xing Liu, Xue Yang, Zhejun Huang, Jianfeng Xing, Cuili Liang, Junyi Li, Yingchao Tan, Shengmin Zhang, Jiyan Qi, De Ye, Zhonghua Li, Jie Cao, Chaorong Tang, Kaiye Liu
{"title":"Rubber biosynthesis drives the biogenesis and development of rubber particles, the rubber-producing organelles","authors":"Tiancheng Xu, Yongmei Li, Xing Liu, Xue Yang, Zhejun Huang, Jianfeng Xing, Cuili Liang, Junyi Li, Yingchao Tan, Shengmin Zhang, Jiyan Qi, De Ye, Zhonghua Li, Jie Cao, Chaorong Tang, Kaiye Liu","doi":"10.1111/pbi.70052","DOIUrl":null,"url":null,"abstract":"Rubber particles (RPs) are specialized organelles for the biosynthesis and storage of natural rubber in rubber-producing plants. However, the mechanisms underlying the biogenesis and development of RPs remain unclear. In this study, two latex-specific <i>cis</i>-prenyltransferases (CPTs), TkCPT1 and TkCPT2, were identified in <i>Taraxacum kok-saghyz</i>, with almost identical orthologues retained across other <i>Taraxacum</i> species. For the first time, <i>Tkcpt1</i> single and <i>Tkcpt1/2</i> double mutants were successfully generated using the CRISPR/Cas9 system. Rubber biosynthesis was significantly depressed in <i>Tkcpt1</i> mutants and completely blocked in <i>Tkcpt1/2</i> mutants. The absence of RPs in the <i>Tkcpt1/2</i> was confirmed using oil red O and Nile red staining, high-speed centrifugal stratification, cryo-SEM and TEM on fresh latex or laticifer cells. Transcriptomic and proteomic analyses revealed that, in the latex of <i>Tkcpt1/</i>2, rubber biosynthesis was blocked at the protein level, while metabolomic profiling indicated an enrichment of lipids and terpenoids. Furthermore, knockout of <i>TkCPTL1</i>, a latex-specific <i>CPT-like</i> gene that encodes a rubber transferase activator, resulted in outright disruption of rubber biosynthesis and RP ontogeny, a phenotype similar to that of <i>Tkcpt1/2</i> mutants. These findings indicate that rubber biosynthesis is a driving force for the biogenesis and development of RPs, providing new insights into rubber production mechanisms.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"16 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70052","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rubber particles (RPs) are specialized organelles for the biosynthesis and storage of natural rubber in rubber-producing plants. However, the mechanisms underlying the biogenesis and development of RPs remain unclear. In this study, two latex-specific cis-prenyltransferases (CPTs), TkCPT1 and TkCPT2, were identified in Taraxacum kok-saghyz, with almost identical orthologues retained across other Taraxacum species. For the first time, Tkcpt1 single and Tkcpt1/2 double mutants were successfully generated using the CRISPR/Cas9 system. Rubber biosynthesis was significantly depressed in Tkcpt1 mutants and completely blocked in Tkcpt1/2 mutants. The absence of RPs in the Tkcpt1/2 was confirmed using oil red O and Nile red staining, high-speed centrifugal stratification, cryo-SEM and TEM on fresh latex or laticifer cells. Transcriptomic and proteomic analyses revealed that, in the latex of Tkcpt1/2, rubber biosynthesis was blocked at the protein level, while metabolomic profiling indicated an enrichment of lipids and terpenoids. Furthermore, knockout of TkCPTL1, a latex-specific CPT-like gene that encodes a rubber transferase activator, resulted in outright disruption of rubber biosynthesis and RP ontogeny, a phenotype similar to that of Tkcpt1/2 mutants. These findings indicate that rubber biosynthesis is a driving force for the biogenesis and development of RPs, providing new insights into rubber production mechanisms.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.