Computational Investigation of the Chemical Bond between An(III) Ions and Soft-Donor Ligands

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Pub Date : 2025-03-21 DOI:10.1021/acs.inorgchem.4c03924
Sabyasachi Roy Chowdhury, Naomi Rehberg, Bess Vlaisavljevich
{"title":"Computational Investigation of the Chemical Bond between An(III) Ions and Soft-Donor Ligands","authors":"Sabyasachi Roy Chowdhury, Naomi Rehberg, Bess Vlaisavljevich","doi":"10.1021/acs.inorgchem.4c03924","DOIUrl":null,"url":null,"abstract":"The chemical bonding of actinide ions with arene and borohydride ligands is explored via quantum chemical methods to understand how the transuranium elements interact with soft-donor ligands. Specifically, the <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mo stretchy=\"false\"&gt;[&lt;/mo&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;A&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi mathvariant=\"normal\"&gt;C&lt;/mi&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;M&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;B&lt;/mi&gt;&lt;mi mathvariant=\"normal\"&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;]&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 9.151em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 8.298em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.707em, 1008.18em, 2.957em, -999.997em); top: -2.554em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Main;\">[</span><span><span style=\"font-family: STIXMathJax_Main;\">A</span><span style=\"font-family: STIXMathJax_Main;\">n</span></span><span><span style=\"font-family: STIXMathJax_Main;\">(</span><span><span style=\"display: inline-block; position: relative; width: 1.082em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.63em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">C</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.685em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">6</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span><span style=\"display: inline-block; position: relative; width: 1.764em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1001.31em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Main;\">M</span><span style=\"font-family: STIXMathJax_Main;\">e</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 1.31em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">6</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main;\">)</span></span><span><span style=\"display: inline-block; position: relative; width: 2.901em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1002.45em, 4.321em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Main;\">(</span><span><span style=\"display: inline-block; position: relative; width: 1.821em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1001.37em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Main;\">B</span><span style=\"font-family: STIXMathJax_Main;\">H</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 1.366em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">4</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main;\">)</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.747em; left: 2.503em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">3</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main;\">]</span></span><span style=\"display: inline-block; width: 0px; height: 2.56em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.309em; border-left: 0px solid; width: 0px; height: 1.128em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><mrow><mi mathvariant=\"normal\">A</mi><mi mathvariant=\"normal\">n</mi></mrow><mrow><mo stretchy=\"false\">(</mo><msub><mi mathvariant=\"normal\">C</mi><mn>6</mn></msub><msub><mrow><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">e</mi></mrow><mn>6</mn></msub><mo stretchy=\"false\">)</mo></mrow><msub><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"normal\">B</mi><mi mathvariant=\"normal\">H</mi></mrow><mn>4</mn></msub><mo stretchy=\"false\">)</mo></mrow><mn>3</mn></msub><mo stretchy=\"false\">]</mo></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mo stretchy=\"false\">[</mo><mrow><mi mathvariant=\"normal\">A</mi><mi mathvariant=\"normal\">n</mi></mrow><mrow><mo stretchy=\"false\">(</mo><msub><mi mathvariant=\"normal\">C</mi><mn>6</mn></msub><msub><mrow><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">e</mi></mrow><mn>6</mn></msub><mo stretchy=\"false\">)</mo></mrow><msub><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"normal\">B</mi><mi mathvariant=\"normal\">H</mi></mrow><mn>4</mn></msub><mo stretchy=\"false\">)</mo></mrow><mn>3</mn></msub><mo stretchy=\"false\">]</mo></math></script> complexes (An = U, Np, and Pu) and their reduced congeners are studied. Density functional theory (DFT) shows that the metal–ligand interactions in the neutral complexes are governed by electrostatic interactions. Both DFT and complete active space (CASSCF) results show that as one moves from U to Pu, the 5f-orbitals are stabilized leading to a poorer energy match with the ligand orbitals. This contributes to progressively weaker metal-arene and metal-borohydride interactions across the series due to a decrease in energy-driven covalency. A reduction in orbital contributions to bonding is obtained for the transuranium-arene interactions as well. Upon reduction, the arene is reduced, forming a δ-bond. This causes the An–arene distances to contract by 0.1–0.2 Å compared to the neutral complexes. The ground state is assigned as the intermediate-spin state where the arene radical is antiferromagnetically coupled to the metal-centered f-electrons in Np and Pu. On the other hand, the ferromagnetically and antiferromagnetically coupled states are close in energy in the uranium complex, but do not mix when spin–orbit coupling is included using a state-interaction approach (SO-CASPT2). The population of the CASSCF δ*-antibonding natural orbital increases from U to Pu consistent with the increased An−arene distances, weaker interactions, and decreasing covalency across the series. Although the An–B distance increases by ca. 0.06 Å upon reduction, both the neutral and reduced species involve an An(III)–borohydride bond and as such are qualitatively similar. The Np complexes can be assigned to have slightly weaker bonding than the uranium analogs but are overall “uranium-like”. The Pu complexes are predicted to have less covalent contributions to bonding in both the Pu–arene and Pu–borohydride interactions; however, the Pu–arene interaction is predicted to be particularly weak.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"27 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c03924","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The chemical bonding of actinide ions with arene and borohydride ligands is explored via quantum chemical methods to understand how the transuranium elements interact with soft-donor ligands. Specifically, the [An(C6Me6)(BH4)3] complexes (An = U, Np, and Pu) and their reduced congeners are studied. Density functional theory (DFT) shows that the metal–ligand interactions in the neutral complexes are governed by electrostatic interactions. Both DFT and complete active space (CASSCF) results show that as one moves from U to Pu, the 5f-orbitals are stabilized leading to a poorer energy match with the ligand orbitals. This contributes to progressively weaker metal-arene and metal-borohydride interactions across the series due to a decrease in energy-driven covalency. A reduction in orbital contributions to bonding is obtained for the transuranium-arene interactions as well. Upon reduction, the arene is reduced, forming a δ-bond. This causes the An–arene distances to contract by 0.1–0.2 Å compared to the neutral complexes. The ground state is assigned as the intermediate-spin state where the arene radical is antiferromagnetically coupled to the metal-centered f-electrons in Np and Pu. On the other hand, the ferromagnetically and antiferromagnetically coupled states are close in energy in the uranium complex, but do not mix when spin–orbit coupling is included using a state-interaction approach (SO-CASPT2). The population of the CASSCF δ*-antibonding natural orbital increases from U to Pu consistent with the increased An−arene distances, weaker interactions, and decreasing covalency across the series. Although the An–B distance increases by ca. 0.06 Å upon reduction, both the neutral and reduced species involve an An(III)–borohydride bond and as such are qualitatively similar. The Np complexes can be assigned to have slightly weaker bonding than the uranium analogs but are overall “uranium-like”. The Pu complexes are predicted to have less covalent contributions to bonding in both the Pu–arene and Pu–borohydride interactions; however, the Pu–arene interaction is predicted to be particularly weak.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
期刊最新文献
Actinide(II) Dioxo Stabilization in the Dipyriamethyrin Ligand Environment: A DFT Study A Cellulose Pore Adsorption Strategy to Prepare CoFe/Co8FeS8 Heterostructures into N/S-Doped Carbon Cavities for Enhancing ORR/OER Performance Computational Investigation of the Chemical Bond between An(III) Ions and Soft-Donor Ligands Electrode-Mediated Photochemical Disproportionation of a Polypyridylruthenium(II) Chromophore Unraveling the Mechanism of Circularly Polarized Thermally Activated Delayed Fluorescence (CP-TADF) in Chiral Two-Coordinated Cu(I) Emitters: A Comprehensive Theoretical Exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1