Cobalt Metal Enables Ultrahigh-Efficiency, Long-Life, and Dendrite-Free Aqueous Multivalent Batteries

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2025-03-20 DOI:10.1039/d4ee06091a
Songyang Chang, Wentao Hou, Angelica Del Valle-Perez, Irfan Ullah, Xiaoyu Du, Lisandro Cunci, Gerardo Morell, Xianyong Wu
{"title":"Cobalt Metal Enables Ultrahigh-Efficiency, Long-Life, and Dendrite-Free Aqueous Multivalent Batteries","authors":"Songyang Chang, Wentao Hou, Angelica Del Valle-Perez, Irfan Ullah, Xiaoyu Du, Lisandro Cunci, Gerardo Morell, Xianyong Wu","doi":"10.1039/d4ee06091a","DOIUrl":null,"url":null,"abstract":"Aqueous multivalent metal batteries represent an attractive option for energy storage. Currently, various metals have been attempted for aqueous battery operation, ranging from divalent metals (zinc, iron, nickel, manganese) to trivalent ones (antimony, indium). However, the fundamental cobalt plating chemistry remains largely neglected and poorly understood, despite its appealing merits in capacity, redox potential, and morphology. Herein, we bridge this knowledge gap by revealing highly reversible Co2+/Co plating reaction in a near-neutral 1 M CoCl2 aqueous electrolyte. Remarkably, cobalt demonstrates exceptional performance, characterized by modest polarization (48 mV), ultrahigh plating efficiency (~99.9%), long lifespan (4,000 hours, 5.5 months), and strong resistance to harsh conditions, including ultrahigh capacities (up to 30 mAh cm-2), ultralow currents (down to 0.05 mA cm-2), and extended storage periods (24-168 hours). The superb performance primarily stems from its closely packed, spherical, and dendrite-free morphology with a minimal surface area. Moreover, cobalt is fully compatible with various cathode materials, enabling high-energy (240 Wh kg-1), high-rate (80 A g-1), and long-cycling (20,000 cycles) batteries. These properties were achieved without delicate optimization of experimental parameters, highlighting the inherent merits of cobalt over other metal candidates. This work unlocks the potential of cobalt for constructing advanced aqueous multivalent batteries.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"3 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee06091a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous multivalent metal batteries represent an attractive option for energy storage. Currently, various metals have been attempted for aqueous battery operation, ranging from divalent metals (zinc, iron, nickel, manganese) to trivalent ones (antimony, indium). However, the fundamental cobalt plating chemistry remains largely neglected and poorly understood, despite its appealing merits in capacity, redox potential, and morphology. Herein, we bridge this knowledge gap by revealing highly reversible Co2+/Co plating reaction in a near-neutral 1 M CoCl2 aqueous electrolyte. Remarkably, cobalt demonstrates exceptional performance, characterized by modest polarization (48 mV), ultrahigh plating efficiency (~99.9%), long lifespan (4,000 hours, 5.5 months), and strong resistance to harsh conditions, including ultrahigh capacities (up to 30 mAh cm-2), ultralow currents (down to 0.05 mA cm-2), and extended storage periods (24-168 hours). The superb performance primarily stems from its closely packed, spherical, and dendrite-free morphology with a minimal surface area. Moreover, cobalt is fully compatible with various cathode materials, enabling high-energy (240 Wh kg-1), high-rate (80 A g-1), and long-cycling (20,000 cycles) batteries. These properties were achieved without delicate optimization of experimental parameters, highlighting the inherent merits of cobalt over other metal candidates. This work unlocks the potential of cobalt for constructing advanced aqueous multivalent batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Comprehensive crystallization retardation of inorganic perovskite for high performance inverted solar cells Incorporating Lithium-Deficient Layer and Interfacial-Confined Catalysis Enables the Reversible Redox of Surface Oxygen Species in Lithium-Rich Manganese-based Oxides A carbon cathode for lithium mediated electrochemical ammonia synthesis A Unitized Encapsulation Architecture with Durable Epitaxial Ion-conductive Scaffolds for Ultrastable Solid-state Sulfur Cathode Cobalt Metal Enables Ultrahigh-Efficiency, Long-Life, and Dendrite-Free Aqueous Multivalent Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1