Pt/SnO2/Sb2O4 nanoparticle catalyst embedded in Multi-walled carbon nanotubes as active material for electrochemical hydrogen storage inquiries

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Dalton Transactions Pub Date : 2025-03-21 DOI:10.1039/d5dt00336a
Raziyeh Akbarzadeh
{"title":"Pt/SnO2/Sb2O4 nanoparticle catalyst embedded in Multi-walled carbon nanotubes as active material for electrochemical hydrogen storage inquiries","authors":"Raziyeh Akbarzadeh","doi":"10.1039/d5dt00336a","DOIUrl":null,"url":null,"abstract":"Hydrogen storage and safe transport are the most important issues for hydrogen energy applications. Hydrogen has the necessary potential to provide clean fuel for heating and transportation because its only product of this combustion is pure water. Hydrogen is identified as one of the most renewable energy sources by supplying an efficient storage method. The electrochemical method with high energy conversion efficiency, through absorbtion/desorbtion mechanisms, is considered an appropriate strategy to achieve hydrogen storage. Hence, we propose a hydrogen energy storage system based on efficient electrode materials and electrochemical method. Due to obtaining high efficiency hydrogen storage, the Pt/SnO2/Sb2O4 nanoparticle catalyst embedded in multi-walled carbon nanotubes (MWCNTs) is synthesized via a facile polyol method, as active material. The sample structure was characterized by different techniques to determine its crystal structure, surface morphology, elements and porosity. Further, the electrochemical hydrogen storage abilities and the specific capacitance values of the as-prepared nanocomposite were assessed in alkaline media by chronopotentiometry analysis. The XRD studies exhibit that the average crystallite size of the Pt/SnO2/Sb2O4 nanoparticle catalyst is estimated to be around 7.5 nm. Also, the BET measurement shows a specific surface area, pore volume and pore diameter of 137.89 m2g-1, 0.3379 cm3g-1 and 9.8 nm for Pt/SnO2/Sb2O4/MWCNTs nanocomposite, respectively. The electrochemical consequences indicate that the incorporation of Pt/SnO2/Sb2O4 nanoparticle catalyst with MWCNTs showed excellent cycle stability and a high degree of electrochemical reversibility as an optimistic active candidate for use in electrochemical hydrogen storage. The maximum discharge capacity of Pt/ SnO2/Sb2O4 /MWCNTs nanocomposite was obtained to be 3480 mAhg-1 after 12 cycles. The higher and excellent discharge capacity of nanocomposite can partially be ascribed to its higher porosity, large specific surface area and the small size of Pt/SnO2/Sb2O4 nanoparticle catalyst.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"41 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5dt00336a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen storage and safe transport are the most important issues for hydrogen energy applications. Hydrogen has the necessary potential to provide clean fuel for heating and transportation because its only product of this combustion is pure water. Hydrogen is identified as one of the most renewable energy sources by supplying an efficient storage method. The electrochemical method with high energy conversion efficiency, through absorbtion/desorbtion mechanisms, is considered an appropriate strategy to achieve hydrogen storage. Hence, we propose a hydrogen energy storage system based on efficient electrode materials and electrochemical method. Due to obtaining high efficiency hydrogen storage, the Pt/SnO2/Sb2O4 nanoparticle catalyst embedded in multi-walled carbon nanotubes (MWCNTs) is synthesized via a facile polyol method, as active material. The sample structure was characterized by different techniques to determine its crystal structure, surface morphology, elements and porosity. Further, the electrochemical hydrogen storage abilities and the specific capacitance values of the as-prepared nanocomposite were assessed in alkaline media by chronopotentiometry analysis. The XRD studies exhibit that the average crystallite size of the Pt/SnO2/Sb2O4 nanoparticle catalyst is estimated to be around 7.5 nm. Also, the BET measurement shows a specific surface area, pore volume and pore diameter of 137.89 m2g-1, 0.3379 cm3g-1 and 9.8 nm for Pt/SnO2/Sb2O4/MWCNTs nanocomposite, respectively. The electrochemical consequences indicate that the incorporation of Pt/SnO2/Sb2O4 nanoparticle catalyst with MWCNTs showed excellent cycle stability and a high degree of electrochemical reversibility as an optimistic active candidate for use in electrochemical hydrogen storage. The maximum discharge capacity of Pt/ SnO2/Sb2O4 /MWCNTs nanocomposite was obtained to be 3480 mAhg-1 after 12 cycles. The higher and excellent discharge capacity of nanocomposite can partially be ascribed to its higher porosity, large specific surface area and the small size of Pt/SnO2/Sb2O4 nanoparticle catalyst.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
期刊最新文献
Straightforward encapsulation of ultrastable CsPbBr3 PQDs and rare-earth emitters in zeolite for ratiometric temperature sensing and wet fingerprint recognition Controllable distribution of surface modified MIL-53 with ruthenium nanoparticles on nickel foam and its high efficiency electrocatalytic hydrogen evolution Dual Emissive Ytterbium (III) Complexes with π-Conjugated BODIPY-Bipyridine Ligands A difunctional Dy(III)-complex exhibiting single-molecule magnet behaviour and fluorescent cellular-imaging Pt/SnO2/Sb2O4 nanoparticle catalyst embedded in Multi-walled carbon nanotubes as active material for electrochemical hydrogen storage inquiries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1