Enrichment and Detection of HER2-Expressing Extracellular Vesicles Based on DNA Tetrahedral Nanostructures: A New Strategy for Liquid Biopsy in Breast Cancer
Feng Xu, Ke Wang, Chi Xu, Jingtong Xu, Chengjun Zhu, Ye Zhu, Chuandong Zhu, Wenwen Zhang, Jian Zhang, Zhe Li, Xiaoxiang Guan
{"title":"Enrichment and Detection of HER2-Expressing Extracellular Vesicles Based on DNA Tetrahedral Nanostructures: A New Strategy for Liquid Biopsy in Breast Cancer","authors":"Feng Xu, Ke Wang, Chi Xu, Jingtong Xu, Chengjun Zhu, Ye Zhu, Chuandong Zhu, Wenwen Zhang, Jian Zhang, Zhe Li, Xiaoxiang Guan","doi":"10.1021/acs.analchem.4c06417","DOIUrl":null,"url":null,"abstract":"Extracellular vesicles (EVs) play a crucial role as important mediators of intercellular communication in the progression of tumors. The capture and analysis of tumor-derived EVs offer new possibilities for the application of cancer liquid biopsies. This study aims to construct a DNA tetrahedral nanostructure that specifically recognizes HER2 and CD63, enabling the effective enrichment and detection of HER2-expressing EVs (HEVs). We enriched HEVs from cell lines and 13 random clinical samples and validated their characteristics by dynamic light scattering, transmission electron microscopy, and Western blotting. Further, we detected HEVs levels in clinical samples. The HEVs levels in HER2-positive breast cancer patients were significantly higher than those in healthy/benign controls (mean, 4.737 vs 4.160 vs 4.144 U/μL, <i>P</i> < 0.0001), displaying a concentration gradient across different HER2 expression levels. This study establishes an approach for HEV detection, thus providing a new tool for the diagnosis of HER2-positive breast cancer.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"34 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06417","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles (EVs) play a crucial role as important mediators of intercellular communication in the progression of tumors. The capture and analysis of tumor-derived EVs offer new possibilities for the application of cancer liquid biopsies. This study aims to construct a DNA tetrahedral nanostructure that specifically recognizes HER2 and CD63, enabling the effective enrichment and detection of HER2-expressing EVs (HEVs). We enriched HEVs from cell lines and 13 random clinical samples and validated their characteristics by dynamic light scattering, transmission electron microscopy, and Western blotting. Further, we detected HEVs levels in clinical samples. The HEVs levels in HER2-positive breast cancer patients were significantly higher than those in healthy/benign controls (mean, 4.737 vs 4.160 vs 4.144 U/μL, P < 0.0001), displaying a concentration gradient across different HER2 expression levels. This study establishes an approach for HEV detection, thus providing a new tool for the diagnosis of HER2-positive breast cancer.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.