Ultrasmall Bi@Au Schottky Heterojunction with a High Potential Barrier for Amplifying Radioimmunotherapy

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-03-20 DOI:10.1021/acsnano.5c02753
Chuang Shen, Xianghong Niu, Jiaxu Zhang, Shengheng Wang, Jianwei Chen, Fei Xu, Yefan Duan, Ying Zhang, Lixing Weng, Zhimin Luo, Lianhui Wang
{"title":"Ultrasmall Bi@Au Schottky Heterojunction with a High Potential Barrier for Amplifying Radioimmunotherapy","authors":"Chuang Shen, Xianghong Niu, Jiaxu Zhang, Shengheng Wang, Jianwei Chen, Fei Xu, Yefan Duan, Ying Zhang, Lixing Weng, Zhimin Luo, Lianhui Wang","doi":"10.1021/acsnano.5c02753","DOIUrl":null,"url":null,"abstract":"Radiotherapy (RT) often has poor clinical sensitivity and tumor metastasis inhibition due to weak X-ray absorption, low energy deposition, inefficient reactive oxygen species (ROS) generation, and induction of antitumor immune response. Here, we report an ultrasmall Bi@Au Schottky heterojunction, namely, Bi@Au nanodots (Bi@Au NDs), to enhance the sensitivity of RT and activate systemic immunity for effective tumor treatment and metastasis inhibition. Bi@Au NDs exhibit a high efficiency of ROS generation and glutathione (GSH) depletion. Density functional theory calculations reveal that Bi@Au NDs with a high Schottky potential barrier can efficiently facilitate carrier separation and prevent carrier backflow, which results in abundant electrons for catalytically decomposing H<sub>2</sub>O<sub>2</sub> to <sup>•</sup>OH under X-ray irradiation. Experimental results in vitro and in vivo show that Bi@Au NDs can significantly sensitize RT by enhancing ROS generation and GSH depletion. Bi@Au ND-sensitized RT greatly induces immunogenic cell death and thus promotes a CD8<sup>+</sup> T cell-mediated systemic immune response, ultimately inhibiting tumor metastasis. Bi@Au NDs as a kind of Schottky heterojunctions can be an effective amplifier for radioimmunotherapy.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"68 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c02753","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Radiotherapy (RT) often has poor clinical sensitivity and tumor metastasis inhibition due to weak X-ray absorption, low energy deposition, inefficient reactive oxygen species (ROS) generation, and induction of antitumor immune response. Here, we report an ultrasmall Bi@Au Schottky heterojunction, namely, Bi@Au nanodots (Bi@Au NDs), to enhance the sensitivity of RT and activate systemic immunity for effective tumor treatment and metastasis inhibition. Bi@Au NDs exhibit a high efficiency of ROS generation and glutathione (GSH) depletion. Density functional theory calculations reveal that Bi@Au NDs with a high Schottky potential barrier can efficiently facilitate carrier separation and prevent carrier backflow, which results in abundant electrons for catalytically decomposing H2O2 to OH under X-ray irradiation. Experimental results in vitro and in vivo show that Bi@Au NDs can significantly sensitize RT by enhancing ROS generation and GSH depletion. Bi@Au ND-sensitized RT greatly induces immunogenic cell death and thus promotes a CD8+ T cell-mediated systemic immune response, ultimately inhibiting tumor metastasis. Bi@Au NDs as a kind of Schottky heterojunctions can be an effective amplifier for radioimmunotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超小Bi@Au肖特基异质结与高电位屏障放大放射免疫治疗
放疗(RT)由于x射线吸收弱、能量沉积低、活性氧(ROS)生成效率低、诱导抗肿瘤免疫反应等原因,临床敏感性和肿瘤转移抑制能力往往较差。在这里,我们报道了一个超小的Bi@Au Schottky异质结,即Bi@Au纳米点(Bi@Au NDs),以增强RT的敏感性并激活全身免疫,从而有效治疗肿瘤和抑制转移。Bi@Au nd表现出ROS生成和谷胱甘肽(GSH)消耗的高效率。密度泛函数理论计算表明,具有高肖特基势垒的Bi@Au nd可以有效地促进载流子分离,防止载流子回流,从而产生丰富的电子,在x射线照射下催化H2O2分解为•OH。体外和体内实验结果表明,Bi@Au NDs可通过增强ROS生成和GSH消耗而显著致敏RT。Bi@Au nd致敏RT极大地诱导免疫原性细胞死亡,从而促进CD8+ T细胞介导的全身免疫应答,最终抑制肿瘤转移。Bi@Au NDs作为一种肖特基异质结,可作为放射免疫治疗的有效放大器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
isopropyl alcohol
阿拉丁
Bi powder
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Highly Active Strontium Peroxide Nanoparticles Induce Alkalization/Oxidation to Potentiate Cancer Immuno-Metabolic Therapy. Trans-Endothelial Trafficking in Zebrafish: Nanobio Interactions of Polyethylene Glycol-Based Nanoparticles in Live Vasculature. Real-Space Observation of Spin-Induced Lattice Distortion of O2 Monolayers Revealed by Atomic Force Microscopy. Green Upcycling Strategy for Spent Lithium-Ion Batteries: One-Step Coupling of Fluoridation Inhibition and Lattice Stabilization. Robust LiNi0.6Mn0.4O2 Cathode Achieved from the Dual-Function Strategy of Microstructural Stress Dissipation and Crystalline Phase Ion Transport Improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1