{"title":"Comparative Study of Numerical Modeling Methods for a Flux-Pumped Josephson Parametric Amplifier","authors":"Seong Hyeon Park;Gahyun Choi;Bokyung Kim;Gyunghun Kim;Yong-Ho Lee;Seungyong Hahn","doi":"10.1109/TASC.2025.3546921","DOIUrl":null,"url":null,"abstract":"Quantum-limited noise amplifiers based on superconducting Josephson junction elements are essential components for measuring low-power signals in a wide range of applications. The gain bandwidth of a flux-pumped Josephson parametric amplifier can be broadened by coupling junction elements with an impedance-matching network. Well-known modeling methods for these amplifiers typically assume ideal lumped-element circuits for passive components, but often overlook unexpected resonant modes arising from the bulk geometric features. To address this challenge, flux-pumped junction elements can be simulated using finite-element analysis (FEA) combined with the pumpistor modeling method, which accurately accounts for the geometric features of arbitrary impedance-matching circuits. Here, we present a benchmark study using a circuit topology to compare different modeling methods: (1) the coupled mode network method, (2) the harmonic balance method, (3) the analytical pumpistor method, and (4) the FEA-assisted pumpistor method. Our results highlight the importance of accurately reflecting geometric features to prevent unexpected resonant modes and avoid detuning from the target flux bias values.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-6"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10908876/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum-limited noise amplifiers based on superconducting Josephson junction elements are essential components for measuring low-power signals in a wide range of applications. The gain bandwidth of a flux-pumped Josephson parametric amplifier can be broadened by coupling junction elements with an impedance-matching network. Well-known modeling methods for these amplifiers typically assume ideal lumped-element circuits for passive components, but often overlook unexpected resonant modes arising from the bulk geometric features. To address this challenge, flux-pumped junction elements can be simulated using finite-element analysis (FEA) combined with the pumpistor modeling method, which accurately accounts for the geometric features of arbitrary impedance-matching circuits. Here, we present a benchmark study using a circuit topology to compare different modeling methods: (1) the coupled mode network method, (2) the harmonic balance method, (3) the analytical pumpistor method, and (4) the FEA-assisted pumpistor method. Our results highlight the importance of accurately reflecting geometric features to prevent unexpected resonant modes and avoid detuning from the target flux bias values.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.