Enhanced Wear Resistance of Gas Nitrided AISI 431 HVOF Coatings at Elevated Temperatures

IF 2.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Engineering and Performance Pub Date : 2024-12-02 DOI:10.1007/s11665-024-10501-x
Niclas Hanisch, Erik Saborowski, Thomas Lindner, Bianca Preuß, Serge Tchinou, Kristian Börner, Thomas Lampke
{"title":"Enhanced Wear Resistance of Gas Nitrided AISI 431 HVOF Coatings at Elevated Temperatures","authors":"Niclas Hanisch,&nbsp;Erik Saborowski,&nbsp;Thomas Lindner,&nbsp;Bianca Preuß,&nbsp;Serge Tchinou,&nbsp;Kristian Börner,&nbsp;Thomas Lampke","doi":"10.1007/s11665-024-10501-x","DOIUrl":null,"url":null,"abstract":"<div><p>Stainless-steel feedstocks achieve increasing importance as sustainable and cost-efficient alternative regarding thermal spraying. However, the wear resistance is often insufficient for demanding applications. Therefore, an additional surface hardening step by thermochemical processes, in particular by gas nitriding, is promising for enhancing surface functionality. The characteristic porosity of thermally sprayed coatings facilitates deep nitrogen diffusion increasing hardness and wear resistance, due to the formation of precipitates. Because nitrides are thermally stable, applications at elevated temperatures are enabled. The process combination was examined for the ferritic stainless-steel AISI 431 applied on mild steel by high-velocity oxygen fuel spraying (HVOF), followed by subsequent gas nitriding. The influence of the thermochemical treatment with respect to a variation in the nitriding potential has been determined in terms of microstructure, phase formation, hardness distribution as well as reciprocating wear resistance at room and elevated temperature. The increase in hardness over 900 HV0.01 and wear resistance with wear rates consistently lower than 1.3 × 10<sup>-4</sup> mm<sup>3</sup> Nm<sup>−1</sup> can be attributed to the successful enrichment of nitrogen and the formation of mainly Fe<sub>4</sub>N precipitates at the coating’s surface. Even at 350 °C, the nitride surface layer provides better wear protection compared to the as-sprayed condition.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 5","pages":"4116 - 4124"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11665-024-10501-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-024-10501-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stainless-steel feedstocks achieve increasing importance as sustainable and cost-efficient alternative regarding thermal spraying. However, the wear resistance is often insufficient for demanding applications. Therefore, an additional surface hardening step by thermochemical processes, in particular by gas nitriding, is promising for enhancing surface functionality. The characteristic porosity of thermally sprayed coatings facilitates deep nitrogen diffusion increasing hardness and wear resistance, due to the formation of precipitates. Because nitrides are thermally stable, applications at elevated temperatures are enabled. The process combination was examined for the ferritic stainless-steel AISI 431 applied on mild steel by high-velocity oxygen fuel spraying (HVOF), followed by subsequent gas nitriding. The influence of the thermochemical treatment with respect to a variation in the nitriding potential has been determined in terms of microstructure, phase formation, hardness distribution as well as reciprocating wear resistance at room and elevated temperature. The increase in hardness over 900 HV0.01 and wear resistance with wear rates consistently lower than 1.3 × 10-4 mm3 Nm−1 can be attributed to the successful enrichment of nitrogen and the formation of mainly Fe4N precipitates at the coating’s surface. Even at 350 °C, the nitride surface layer provides better wear protection compared to the as-sprayed condition.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气体氮化 AISI 431 HVOF 涂层在高温下的耐磨性增强
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Engineering and Performance
Journal of Materials Engineering and Performance 工程技术-材料科学:综合
CiteScore
3.90
自引率
13.00%
发文量
1120
审稿时长
4.9 months
期刊介绍: ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance. The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication. Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered
期刊最新文献
Journal of Materials Engineering and Performance Announces New Associate Editors, Staff Changes Exploring the Impact of Surface Modifications on the Mechanical Characteristics of Acrylonitrile Butadiene Styrene Parts Manufactured Using Fused Deposition Modeling 3D Printing Molybdenum Disulfide-Based Nanocomposites as Super Oil Nano-Additive with Enhanced Tribological and Rheological Properties Anisotropy and Temperature Dependence of Annealing During Mechanical Bending in Ni-Mn-Ga-Based Melt-Spun Ribbons High-Titanium Steel: A Comprehensive Review of Research Progress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1