{"title":"Robust superhydrophobic ORMOSIL hybrid coating via chemical-assembly engineering for wood protection","authors":"Xinxiang Zhang, Sainan Ou, Linxin Zhang, Jiaxin Tan, Wensheng Lin, Ran Li, Zhanhui Yuan","doi":"10.1007/s42114-025-01223-2","DOIUrl":null,"url":null,"abstract":"<div><p>Poor mechanical stability of superhydrophobic coating limits its practical application. In this work, robust superhydrophobic organically modified silicate (ORMOSIL) hybrid coatings were fabricated on wood surface by a chemical-assembly engineering induced by click reaction of PMHS. The superhydrophobic ORMOSIL coating was hybridized from poly(methylhydrogen)siloxane (PMHS), tetravinyltetramethylcyclotetrasiloxane (V4), and silica nanoparticles (SNPs). The click reaction between PMHS and SNPs built a chemically bonded rough surface with very low surface energy, while click reaction between PMHS and V4 resulted in a strong glue of adjacent SNPs, endowing ORMOSIL hybrid coatings with good mechanical stability. Chemical-assembly engineering afforded ORMOSIL coatings superhydrophobicity, self-cleaning property, and good robustness, and the unique physical characteristic of ORMOSIL also gave superhydrophobic coatings excellent resistance to UV light, high and low temperature, and humid and salt mist environments. Finally, chemical-assembly engineering had been demonstrated to be applicable in fabrication of superhydrophobic coating on various substrates containing hydroxyl groups and various nanoparticles could be applied to replace SNPs.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 2","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01223-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01223-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Poor mechanical stability of superhydrophobic coating limits its practical application. In this work, robust superhydrophobic organically modified silicate (ORMOSIL) hybrid coatings were fabricated on wood surface by a chemical-assembly engineering induced by click reaction of PMHS. The superhydrophobic ORMOSIL coating was hybridized from poly(methylhydrogen)siloxane (PMHS), tetravinyltetramethylcyclotetrasiloxane (V4), and silica nanoparticles (SNPs). The click reaction between PMHS and SNPs built a chemically bonded rough surface with very low surface energy, while click reaction between PMHS and V4 resulted in a strong glue of adjacent SNPs, endowing ORMOSIL hybrid coatings with good mechanical stability. Chemical-assembly engineering afforded ORMOSIL coatings superhydrophobicity, self-cleaning property, and good robustness, and the unique physical characteristic of ORMOSIL also gave superhydrophobic coatings excellent resistance to UV light, high and low temperature, and humid and salt mist environments. Finally, chemical-assembly engineering had been demonstrated to be applicable in fabrication of superhydrophobic coating on various substrates containing hydroxyl groups and various nanoparticles could be applied to replace SNPs.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.