Kirkendall effect-assisted electrospinning porous FeCo/Zn@C nanofibers featuring well-dispersed FeCo nanoparticles for ultra-wide electromagnetic wave absorption

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-11-22 DOI:10.1007/s12598-024-02988-z
Qi-Hui Sun, Hao-Cheng Zhai, Yi-Fan Liu, Chun-Sheng Li, Jun-Wei Wang, Xian Jian, Nasir Mahmood
{"title":"Kirkendall effect-assisted electrospinning porous FeCo/Zn@C nanofibers featuring well-dispersed FeCo nanoparticles for ultra-wide electromagnetic wave absorption","authors":"Qi-Hui Sun,&nbsp;Hao-Cheng Zhai,&nbsp;Yi-Fan Liu,&nbsp;Chun-Sheng Li,&nbsp;Jun-Wei Wang,&nbsp;Xian Jian,&nbsp;Nasir Mahmood","doi":"10.1007/s12598-024-02988-z","DOIUrl":null,"url":null,"abstract":"<p>Ultra-wide absorption band and flexibility are needed in multi-scenario applications, however, current electromagnetic wave absorption materials (EMWAMs) are not capable enough to deliver due to rigid structure. Here, we have designed a porous flexible mat composed of Zn-doped carbon (Zn@C) nanofibers (NFs) having encapsulated uniformly dispersed FeCo nanoparticles (NPs) (FeCo/Zn@C) as ultra-wideband absorber. During the electrospinning, the Fe<sup>3+</sup>, Co<sup>2+</sup> and Zn<sup>2+</sup> are uniformly immobilized within the NFs nanocrystallization process. Subsequently, the Kirkendall effect is deployed to trigger the generation of FeCo NPs and porous framework under thermal annealing. The FeCo/Zn@C NFs effectively favor magnetic-dielectric synergies due to the coexistence of magnetic FeCo NPs and dielectric carbon components. One-dimensional porous fiber prolongs the attenuation path and enhances multi-scattering and reflection. While the FeCo NPs encapsulated in Zn-doped carbon NFs provide abundant dipole and interfacial polarization. These favorable factors synergistically enhance absorption performance, resulting in a reflection loss value of − 71.58 dB. Moreover, by varying the thickness of absorbers, effective absorption bandwidth spans from 4.26 to 18.00 GHz. Hence, this work offers innovative insights for fabricating advanced EMWAMs.</p><p>超宽吸收带和柔韧性在多场景应用中被需要,但目前的电磁波吸收材料由于固有的硬性结构而无法实现。在这里,我们设计了由锌掺杂碳(Zn@C)纳米纤维组成的多孔柔性垫,其封装均匀分散的FeCo纳米颗粒(FeCo/Zn@C)作为超宽带吸收剂。在静电纺丝过程中,Fe<sup>3+</sup>、Co<sup>2+</sup>和Zn<sup>2+</sup>在纳米晶化过程中被均匀固定。随后,在热退火条件下,利用柯肯达尔效应触发FeCo纳米颗粒和多孔骨架的生成。FeCo/Zn@C纳米纤维由于磁性FeCo纳米颗粒和介电特性的碳组分共存而有效地促进了磁-介电协同作用。一维多孔纤维延长了衰减路径,增强了多次散射和反射。包裹在锌掺杂碳纤维中的FeCo纳米颗粒则提供了丰富的偶极子和界面极化。这些有利因素协同提高了电磁波吸收性能,导致反射损耗值为-71.58 dB。此外,通过调节吸收层的厚度,有效吸收带宽在4.26–18.00 GHz之间。因此,这项工作为制造先进的电磁波吸收材料提供了创新的见解。</p>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 3","pages":"1856 - 1868"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02988-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra-wide absorption band and flexibility are needed in multi-scenario applications, however, current electromagnetic wave absorption materials (EMWAMs) are not capable enough to deliver due to rigid structure. Here, we have designed a porous flexible mat composed of Zn-doped carbon (Zn@C) nanofibers (NFs) having encapsulated uniformly dispersed FeCo nanoparticles (NPs) (FeCo/Zn@C) as ultra-wideband absorber. During the electrospinning, the Fe3+, Co2+ and Zn2+ are uniformly immobilized within the NFs nanocrystallization process. Subsequently, the Kirkendall effect is deployed to trigger the generation of FeCo NPs and porous framework under thermal annealing. The FeCo/Zn@C NFs effectively favor magnetic-dielectric synergies due to the coexistence of magnetic FeCo NPs and dielectric carbon components. One-dimensional porous fiber prolongs the attenuation path and enhances multi-scattering and reflection. While the FeCo NPs encapsulated in Zn-doped carbon NFs provide abundant dipole and interfacial polarization. These favorable factors synergistically enhance absorption performance, resulting in a reflection loss value of − 71.58 dB. Moreover, by varying the thickness of absorbers, effective absorption bandwidth spans from 4.26 to 18.00 GHz. Hence, this work offers innovative insights for fabricating advanced EMWAMs.

超宽吸收带和柔韧性在多场景应用中被需要,但目前的电磁波吸收材料由于固有的硬性结构而无法实现。在这里,我们设计了由锌掺杂碳(Zn@C)纳米纤维组成的多孔柔性垫,其封装均匀分散的FeCo纳米颗粒(FeCo/Zn@C)作为超宽带吸收剂。在静电纺丝过程中,Fe3+、Co2+和Zn2+在纳米晶化过程中被均匀固定。随后,在热退火条件下,利用柯肯达尔效应触发FeCo纳米颗粒和多孔骨架的生成。FeCo/Zn@C纳米纤维由于磁性FeCo纳米颗粒和介电特性的碳组分共存而有效地促进了磁-介电协同作用。一维多孔纤维延长了衰减路径,增强了多次散射和反射。包裹在锌掺杂碳纤维中的FeCo纳米颗粒则提供了丰富的偶极子和界面极化。这些有利因素协同提高了电磁波吸收性能,导致反射损耗值为-71.58 dB。此外,通过调节吸收层的厚度,有效吸收带宽在4.26–18.00 GHz之间。因此,这项工作为制造先进的电磁波吸收材料提供了创新的见解。

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kirkendall效应辅助静电纺丝多孔FeCo/Zn@C纳米纤维,具有分散良好的FeCo纳米颗粒,用于超宽电磁波吸收
多场景应用需要超宽吸收带和柔性,但目前的电磁波吸收材料(EMWAMs)由于结构僵硬而无法实现。在此,我们设计了一种由掺杂锌的碳纳米纤维(Zn@C)组成的多孔柔性垫(NFs),其中封装了均匀分散的铁钴纳米颗粒(NPs)(FeCo/Zn@C)作为超宽带吸收体。在电纺丝过程中,Fe3+、Co2+ 和 Zn2+ 被均匀地固定在 NFs 纳米结晶过程中。随后,利用 Kirkendall 效应,在热退火条件下生成了 FeCo NPs 和多孔框架。由于磁性 FeCo NPs 和电介质碳成分的共存,FeCo/Zn@C NFs 有效地促进了磁介质协同作用。一维多孔纤维延长了衰减路径,增强了多重散射和反射。而封装在掺锌碳无纺布中的铁钴氧化物则提供了丰富的偶极和界面极化。这些有利因素协同增强了吸收性能,使反射损耗值达到 - 71.58 dB。此外,通过改变吸收体的厚度,有效吸收带宽从 4.26 GHz 到 18.00 GHz 不等。因此,这项工作为制造先进的 EMWAM 提供了创新见解。超宽吸收带和柔韧性在多场景应用中被需要,但目前的电磁波吸收材料由于固有的硬性结构而无法实现。在这里,我们设计了由锌掺杂碳(Zn@C)纳米纤维组成的多孔柔性垫,其封装均匀分散的FeCo纳米颗粒(FeCo/Zn@C)作为超宽带吸收剂。在静电纺丝过程中,Fe3+、Co2+和Zn2+在纳米晶化过程中被均匀固定。随后,在热退火条件下,利用柯肯达尔效应触发FeCo纳米颗粒和多孔骨架的生成。这些有利因素协同提高了电磁波吸收性能,导致反射损耗值为-71.58DB。此外,通过调节吸收层的厚度,有效吸收带宽在4.26-18.00 GHz之间。因此,这项工作为制造先进的电磁波吸收材料提供了创新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Recent advances in green H2O2 production via metal-based functional materials: applications, strategies, and catalytic mechanisms Regulating fracture behaviors and mechanical properties of sintered Nd–Fe–B magnet by reconstructing grain boundaries Enhanced perovskite solar cell performance via low-temperature ALD-Al2O3 interface modification The role of Mn in the stabilization of adiabatic temperature changes of LaFe11.2−xMnxCo0.7Si1.1 alloys in an alternating magnetic field Revealing the mechanism of significant enhancement in interfacial thermal transport in silicon-based ceramic crystalline/amorphous matrix composite phase change materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1