{"title":"Bibliometric analysis of artificial intelligence cyberattack detection models","authors":"Blessing Guembe, Sanjay Misra, Ambrose Azeta, Ines Lopez-Baldominos","doi":"10.1007/s10462-025-11167-0","DOIUrl":null,"url":null,"abstract":"<div><p>Cybercriminals have increasingly adopted advanced and cutting-edge methods that expand the scale and speed of their attacks in recent years. This trend coincides with the rising demand for and scarcity of highly skilled cybersecurity specialists, making them both expensive and difficult to find. Recently, researchers have demonstrated the effectiveness of Artificial Intelligence (AI) approaches in combating sophisticated cyberattacks. However, comprehensive bibliometric data illustrating the study of AI approaches in cyberattack detection remain sparse. This study addresses this gap by investigating the current state of AI-based cyberattack detection research. The study analyzed the Scopus database using bibliometric analysis on a pool of over 2,338 articles published between 2014 and 2024, including 1217 journal articles, 828 conference papers, 121 conference reviews, 85 book chapters, 70 reviews, 5 editorials, and 2 books and short surveys. The study explores various AI-based cyberattack detection approaches globally, focusing on machine learning and deep learning algorithms. The bibliometric analysis was conducted using R, an open-source statistical tool, and Biblioshiny. The findings establish that AI, particularly machine learning and deep learning, enhances intrusion detection accuracy and is a growing research trend. Researchers have effectively employed these techniques for malware detection. The USA leads in AI cyberattack research, followed by India, China, Saudi Arabia, and Australia. Despite publishing fewer articles, Canada and Italy received significant citations. Additionally, strong research collaboration exists among the USA, China, Australia, Saudi Arabia, and India. Keyword analysis highlights AI’s effectiveness in identifying patterns and malicious behaviours, enhancing intrusion detection even in complex cyberattacks. Machine learning can detect intrusions based on anomalies caused by malicious or compromised devices, as well as unknown threats, with speed, accuracy, and a low false-positive rate.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 6","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11167-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11167-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cybercriminals have increasingly adopted advanced and cutting-edge methods that expand the scale and speed of their attacks in recent years. This trend coincides with the rising demand for and scarcity of highly skilled cybersecurity specialists, making them both expensive and difficult to find. Recently, researchers have demonstrated the effectiveness of Artificial Intelligence (AI) approaches in combating sophisticated cyberattacks. However, comprehensive bibliometric data illustrating the study of AI approaches in cyberattack detection remain sparse. This study addresses this gap by investigating the current state of AI-based cyberattack detection research. The study analyzed the Scopus database using bibliometric analysis on a pool of over 2,338 articles published between 2014 and 2024, including 1217 journal articles, 828 conference papers, 121 conference reviews, 85 book chapters, 70 reviews, 5 editorials, and 2 books and short surveys. The study explores various AI-based cyberattack detection approaches globally, focusing on machine learning and deep learning algorithms. The bibliometric analysis was conducted using R, an open-source statistical tool, and Biblioshiny. The findings establish that AI, particularly machine learning and deep learning, enhances intrusion detection accuracy and is a growing research trend. Researchers have effectively employed these techniques for malware detection. The USA leads in AI cyberattack research, followed by India, China, Saudi Arabia, and Australia. Despite publishing fewer articles, Canada and Italy received significant citations. Additionally, strong research collaboration exists among the USA, China, Australia, Saudi Arabia, and India. Keyword analysis highlights AI’s effectiveness in identifying patterns and malicious behaviours, enhancing intrusion detection even in complex cyberattacks. Machine learning can detect intrusions based on anomalies caused by malicious or compromised devices, as well as unknown threats, with speed, accuracy, and a low false-positive rate.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.