Qiliang Zhang, Yangjie Zuo, Zongwei Hu, Yingshan Xu, Xiaopeng Liu
{"title":"Advances and Challenges in Interference-Fit Technology for Enhancing the Mechanical Performance of Joints","authors":"Qiliang Zhang, Yangjie Zuo, Zongwei Hu, Yingshan Xu, Xiaopeng Liu","doi":"10.1007/s11665-024-10418-5","DOIUrl":null,"url":null,"abstract":"<div><p>In industries such as aerospace, defense, and automotive, mechanical joining methods are widely adopted. However, the stress concentration effects have diminished the fatigue performance of these connections. Interference fit has emerged as a method proven to effectively enhance the fatigue resistance of such joints, yet traditional theoretical frameworks have not fully elucidated the mechanisms behind its fatigue strengthening, hindering the advancement and application of this technology. This article meticulously assesses and synthesizes key research findings and applications of interference fit from the past 15 years, delving into its classifications, installation processes, and their impacts on the mechanical performance of joints, followed by an in-depth analysis of its fatigue strengthening mechanisms and the limitations of current theories. Furthermore, the article explores hybrid reinforcement techniques that combine interference fit with other methods, offering an advanced strategy for joint reinforcement. Finally, several key challenges are identified for further exploration. The aim of this review is to lay the groundwork for future research, deepen the understanding of interference-fit technology, and promote the design of more robust and reliable mechanical joints.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 5","pages":"3585 - 3607"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-024-10418-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In industries such as aerospace, defense, and automotive, mechanical joining methods are widely adopted. However, the stress concentration effects have diminished the fatigue performance of these connections. Interference fit has emerged as a method proven to effectively enhance the fatigue resistance of such joints, yet traditional theoretical frameworks have not fully elucidated the mechanisms behind its fatigue strengthening, hindering the advancement and application of this technology. This article meticulously assesses and synthesizes key research findings and applications of interference fit from the past 15 years, delving into its classifications, installation processes, and their impacts on the mechanical performance of joints, followed by an in-depth analysis of its fatigue strengthening mechanisms and the limitations of current theories. Furthermore, the article explores hybrid reinforcement techniques that combine interference fit with other methods, offering an advanced strategy for joint reinforcement. Finally, several key challenges are identified for further exploration. The aim of this review is to lay the groundwork for future research, deepen the understanding of interference-fit technology, and promote the design of more robust and reliable mechanical joints.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered